Aberrant activity within auditory network is associated with psychiatric comorbidities in interictal migraineurs without aura

Abstract

The present study aimed to explore associations between brain activity in the auditory cortex and clinical and psychiatric characteristics in patients with migraine without aura (MwoA) during interictal periods. Resting-state data were acquired from patients with episodic MwoA (n = 34) and healthy controls (n = 30). Independent component analysis was used to extract and calculate the resting-state auditory network. Subsequently, we analyzed the correlations between spontaneous activity in the auditory cortex and clinical and psychiatric features in interictal MwoA. Compared with healthy controls, patients with MwoA showed increased activity in the left superior temporal gyrus (STG), postcentral gyrus (PoCG) and insula. Brain activity in the left STG was positively correlated with anxiety scores, and activity in the left PoCG was negatively correlated with anxiety and depression scores. No significant differences were found in intracranial volume between the two groups. This study indicated that functional impairment and altered integration linked to the auditory cortex existed in patients with MwoA in the interictal period, suggesting that auditory-associated cortex disruption as a biomarker may be implemented for the early diagnosis and prediction of neuropsychiatric impairment in interictal MwoA patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

The data underlying the findings of this study is available upon request.

References

  1. Ashina, M., Hansen, J. M., A, D. B., & Olesen, J. (2017). Human models of migraine - short-term pain for long-term gain. Nature Reviews. Neurology, 13(12), 713–724.

    PubMed  Article  PubMed Central  Google Scholar 

  2. Ashkenazi, A., Mushtaq, A., Yang, I., & Oshinsky, M. L. (2009). Ictal and Interictal Phonophobia in migraine—A quantitative controlled study. Cephalalgia, 29(10), 1042–1048.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013.

    PubMed  PubMed Central  Article  Google Scholar 

  4. Bergman-Bock, S. (2018). Associations between migraine and the Most common psychiatric co-morbidities. Headache, 58(2), 346–353.

    PubMed  Article  PubMed Central  Google Scholar 

  5. Bernas, A., Barendse, E. M., Aldenkamp, A. P., Backes, W. H., Hofman, P. A. M., Hendriks, M. P. H., Kessels, R. P. C., Willems, F. M. J., de With, P. H. N., Zinger, S., & Jansen, J. F. A. (2018). Brain resting-state networks in adolescents with high-functioning autism: Analysis of spatial connectivity and temporal neurodynamics. Brain and Behavior, 8(2), e878.

    Article  Google Scholar 

  6. Brennan, K. C., & Pietrobon, D. (2018). A systems neuroscience approach to migraine. Neuron, 97(5), 1004–1021.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Buse, D. C., Reed, M. L., Fanning, K. M., Bostic, R. C., & Lipton, R. B. (2020). Demographics, headache features, and comorbidity profiles in relation to headache frequency in people With migraine: Results of the American migraine prevalence and prevention (AMPP) study. Headache., 60, 2340–2356.

    Article  Google Scholar 

  8. Chen, Z., Chen, X., Liu, M., Dong, Z., Ma, L., & Yu, S. (2017). Altered functional connectivity of amygdala underlying the neuromechanism of migraine pathogenesis. The Journal of Headache and Pain, 18(1), 1–8.

    Article  CAS  Google Scholar 

  9. Chong, C. D., Starling, A. J., & Schwedt, T. J. (2015). Interictal photosensitivity associates with altered brain structure in patients with episodic migraine. Cephalalgia, 36(6), 526–533.

    PubMed  Article  PubMed Central  Google Scholar 

  10. Coppola, G., Di Renzo, A., Tinelli, E., Iacovelli, E., Lepre, C., Di Lorenzo, C., Di Lorenzo, G., Di Lenola, D., Parisi, V., Serrao, M., Pauri, F., Fiermonte, G., Bianco, F., & Pierelli, F. (2015a). Evidence for brain morphometric changes during the migraine cycle: A magnetic resonance-based morphometry study. Cephalalgia, 35(9), 783–791.

    PubMed  Article  PubMed Central  Google Scholar 

  11. Coppola, G., Di Renzo, A., Tinelli, E., Iacovelli, E., Lepre, C., Di Lorenzo, C., Di Lorenzo, G., Di Lenola, D., Parisi, V., Serrao, M., Pauri, F., Fiermonte, G., Bianco, F., & Pierelli, F. (2015b). Evidence for brain morphometric changes during the migraine cycle: A magnetic resonance-based morphometry study. Cephalalgia, 35(9), 783–791.

    PubMed  Article  PubMed Central  Google Scholar 

  12. de Lacalle, S., & Saper, C. B. (2000). Calcitonin gene-related peptide-like immunoreactivity marks putative visceral sensory pathways in human brain. Neuroscience, 100(1), 115–130.

    PubMed  Article  PubMed Central  Google Scholar 

  13. de Tommaso, M., Ambrosini, A., Brighina, F., Coppola, G., Perrotta, A., Pierelli, F., Sandrini, G., Valeriani, M., Marinazzo, D., Stramaglia, S., & Schoenen, J. (2014). Altered processing of sensory stimuli in patients with migraine. Nature Reviews Neurology, 10(3), 144–155.

    PubMed  Article  PubMed Central  Google Scholar 

  14. Dodick, D. W. (2018). A phase-by-phase review of migraine pathophysiology. Headache, 58, 4–16.

    PubMed  Article  PubMed Central  Google Scholar 

  15. GBD 2017 Disease and injury incidence and prevalence collaborators. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017. The Lancet, 392(10159), 1789–1858.

    Article  Google Scholar 

  16. Harriott, A. M., & Schwedt, T. J. (2014). Migraine is associated With altered processing of sensory stimuli. Current Pain and Headache Reports, 18(11), 458.

    PubMed  Article  PubMed Central  Google Scholar 

  17. Headache Classification Committee of the International Headache Society. (2013). The international classification of headache disorders. Cephalalgia, 33(9), 629–808.

    Article  Google Scholar 

  18. Kim, J. H., Kim, S., Suh, S., Koh, S., Park, K., & Oh, K. (2010). Interictal metabolic changes in episodic migraine: A voxel-based FDG-PET study. Cephalalgia, 30(1), 53–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Kovner, R., Oler, J. A., & Kalin, N. H. (2019). Cortico-limbic interactions mediate adaptive and maladaptive responses relevant to psychopathology. American Journal of Psychiatry, 176(12), 987–999.

    Article  Google Scholar 

  20. Kucyi, A., & Davis, K. D. (2015). The dynamic pain connectome. Trends in Neurosciences, 38(2), 86–95.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. Liu, M. G., & Chen, J. (2009). Roles of the hippocampal formation in pain information processing. Neuroscience Bulletin, 25(5), 237–266.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Lo Buono, V., Bonanno, L., Corallo, F., Pisani, L. R., Lo Presti, R., Grugno, R., Di Lorenzo, G., Bramanti, P., & Marino, S. (2017). Functional connectivity and cognitive impairment in migraine with and without aura. The Journal of Headache and Pain, 18(1), 1–6.

    Article  Google Scholar 

  23. Maleki, N., Linnman, C., Brawn, J., Burstein, R., Becerra, L., & Borsook, D. (2012). Her versus his migraine: Multiple sex differences in brain function and structure. Brain, 135(8), 2546–2559.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Maleki, N., Barmettler, G., Moulton, E. A., Scrivani, S., Veggeberg, R., Spierings, E. L. H., Burstein, R., Becerra, L., & Borsook, D. (2015). Female migraineurs show lack of insular thinning with age. PAIN, 156(7), 1232–1239.

    PubMed  PubMed Central  Article  Google Scholar 

  25. Martens-Mantai, T., Speckmann, E., & Gorji, A. (2014). Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex. Synapse, 68(12), 574–584.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Moulton, E. A., Becerra, L., Maleki, N., Pendse, G., Tully, S., Hargreaves, R., Burstein, R., & Borsook, D. (2011). Painful heat reveals Hyperexcitability of the temporal pole in Interictal and Ictal migraine states. Cerebral Cortex, 21(2), 435–448.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Nelson, S. M., Dosenbach, N. U. F., Cohen, A. L., Wheeler, M. E., Schlaggar, B. L., & Petersen, S. E. (2010). Role of the anterior insula in task-level control and focal attention. Brain Structure and Function, 214(5–6), 669–680.

    PubMed  Article  PubMed Central  Google Scholar 

  28. Nyholt, D. R., Borsook, D., & Griffiths, L. R. (2017). Migrainomics — Identifying brain and genetic markers of migraine. Nature reviews. Neurology, 13(12), 725–741.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Russo, A. F. (2015). Calcitonin gene-related peptide (CGRP): A new target for migraine. Annual Review of Pharmacology and Toxicology, 55(1), 533–552.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Schwedt, T. J., Chong, C. D., Chiang, C., Baxter, L., Schlaggar, B. L., & Dodick, D. W. (2014). Enhanced pain-induced activity of pain-processing regions in a case-control study of episodic migraine. Cephalalgia, 34(12), 947–958.

    PubMed  PubMed Central  Article  Google Scholar 

  31. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Singer, T. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303(5661), 1157–1162.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. Stankewitz, A., & May, A. (2011). Increased limbic and brainstem activity during migraine attacks following olfactory stimulation. Neurology, 77(5), 476–482.

    PubMed  Article  PubMed Central  Google Scholar 

  34. Tan, L. L., Pelzer, P., Heinl, C., Tang, W., Gangadharan, V., Flor, H., Sprengel, R., Kuner, T., & Kuner, R. (2017). A pathway from midcingulate cortex to posterior insula gates nociceptive hypersensitivity. Nature Neuroscience, 20(11), 1591–1601.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. Tappe-Theodor, A., & Kuner, R. (2019). A common ground for pain and depression. Nature Neuroscience, 22(10), 1612–1614.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. Tedeschi, G., Russo, A., Conte, F., Corbo, D., Caiazzo, G., Giordano, A., Conforti, R., Esposito, F., & Tessitore, A. (2015). Increased interictal visual network connectivity in patients with migraine with aura. Cephalalgia, 36(2), 139–147.

    PubMed  Article  PubMed Central  Google Scholar 

  37. Tessitore, A., Russo, A., Giordano, A., Conte, F., Corbo, D., De Stefano, M., Cirillo, S., Cirillo, M., Esposito, F., & Tedeschi, G. (2013). Disrupted default mode network connectivity in migraine without aura. The Journal of Headache and Pain, 14, 89.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Tessitore, A., Russo, A., Conte, F., Giordano, A., De Stefano, M., Lavorgna, L., Corbo, D., Caiazzo, G., Esposito, F., & Tedeschi, G. (2015). Abnormal connectivity within executive resting-state network in migraine With Aura. Headache, 55(6), 794–805.

    PubMed  Article  PubMed Central  Google Scholar 

  39. Tolner, E. A., Chen, S., & Eikermann-Haerter, K. (2019). Current understanding of cortical structure and function in migraine. Cephalalgia, 39(13), 1683–1699.

    PubMed  PubMed Central  Article  Google Scholar 

  40. Tu, Y., Fu, Z., Zeng, F., Maleki, N., Lan, L., Li, Z., Park, J., Wilson, G., Gao, Y., Liu, M., Calhoun, V., Liang, F., & Kong, J. (2019). Abnormal thalamocortical network dynamics in migraine. Neurology, 92(23), e2706–e2716.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Tu, S., Liew, D., Ademi, Z., Owen, A. J., & Zomer, E. (2020). The health and productivity burden of migraines in Australia. Headache., 60, 2291–2303.

    PubMed  Article  PubMed Central  Google Scholar 

  42. Wanasuntronwong, A., Jansri, U., & Srikiatkhachorn, A. (2017). Neural hyperactivity in the amygdala induced by chronic treatment of rats with analgesics may elucidate the mechanisms underlying psychiatric comorbidities associated with medication-overuse headache. BMC Neuroscience, 18(1), 10–1186.

    Article  CAS  Google Scholar 

  43. Wei, H. L., Chen, J., Chen, Y. C., Yu, Y. S., Zhou, G. P., Qu, L. J., Yin, X., Li, J., & Zhang, H. (2020). Impaired functional connectivity of limbic system in migraine without aura. Brain Imaging and Behavior, 14(5), 1805–1814.

    PubMed  Article  PubMed Central  Google Scholar 

  44. Wilcox, S. L., Veggeberg, R., Lemme, J., Hodkinson, D. J., Scrivani, S., Burstein, R., Becerra, L., & Borsook, D. (2016). Increased functional activation of limbic brain regions during negative emotional processing in migraine. Frontiers in Human Neuroscience, 10, 366.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Yu, Z., Peng, J., Lv, Y., Zhao, M., Xie, B., Liang, M., Li, H., & Zhou, Z. (2016). Different mean thickness implicates involvement of the cortex in migraine. Medicine, 95(37), e4824.

    PubMed  PubMed Central  Article  Google Scholar 

  46. Yu, D., Yuan, K., Luo, L., Zhai, J., Bi, Y., Xue, T., Ren, X., Zhang, M., Ren, G., & Lu, X. (2017). Abnormal functional integration across core brain networks in migraine without aura. Molecular Pain, 13, 1940341042.

    Article  Google Scholar 

  47. Zhang, J., Su, J., Wang, M., Zhao, Y., Yao, Q., Zhang, Q., Lu, H., Zhang, H., Wang, S., Li, G., Wu, Y., Liu, F., Shi, Y., Li, J., Liu, J., & Du, X. (2016). Increased default mode network connectivity and increased regional homogeneity in migraineurs without aura. The Journal of Headache and Pain, 17(1), 1–9.

    CAS  Google Scholar 

  48. Zhang, J., Su, J., Wang, M., Zhao, Y., Zhang, Q., Yao, Q., Lu, H., Zhang, H., Li, G., Wu, Y., Liu, Y., Liu, F., Zhuang, M., Shi, Y., Hou, T., Zhao, R., Qiao, Y., Li, J., Liu, J., & Du, X. (2017a). The sensorimotor network dysfunction in migraineurs without aura: A resting-state fMRI study. Journal of Neurology, 264(4), 654–663.

    PubMed  Article  PubMed Central  Google Scholar 

  49. Zhang, J., Wu, Y., Su, J., Yao, Q., Wang, M., Li, G., Zhao, R., Shi, Y., Zhao, Y., Zhang, Q., Lu, H., Xu, S., Qin, Z., Cui, G., Li, J., Liu, J., & Du, X. (2017b). Assessment of gray and white matter structural alterations in migraineurs without aura. The Journal of Headache and Pain, 18(1), 1–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all migraineurs and controls for their participation in the study.

Funding

Not applicable.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Junrong Li or Hong Zhang.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The ethical committee of Nanjing Medical University approved the study. Informed consent was obtained from each participant.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, HL., Chen, YC., Yu, YS. et al. Aberrant activity within auditory network is associated with psychiatric comorbidities in interictal migraineurs without aura. Brain Imaging and Behavior (2021). https://doi.org/10.1007/s11682-020-00446-9

Download citation

Keywords

  • fMRI
  • Auditory cortex
  • Migraine without aura
  • Anxiety
  • Depression