Brain Imaging and Behavior

, Volume 12, Issue 2, pp 564–576 | Cite as

Neural mechanisms of risky decision making in adolescents reporting frequent alcohol and/or marijuana use

  • Eric D. Claus
  • Sarah W. Feldstein Ewing
  • Renee E. Magnan
  • Erika Montanaro
  • Kent E. Hutchison
  • Angela D. Bryan
Original Research


Because adolescence is a period of heightened exploration of new behaviors, there is a natural increase in risk taking including initial use of alcohol and marijuana. In order to better understand potential differences in neurocognitive functioning among adolescents who use drugs, the current study aimed to identify the neural substrates of risky decision making that differ among adolescents who are primary users of alcohol or marijuana, primary users of both alcohol and marijuana, and controls who report primary use of neither drug. Participants completed the Balloon Analogue Risk Task (BART) while undergoing functional magnetic resonance imaging. Comparison of brain activation during risky decisions versus non-risky decisions across all subjects revealed greater response to risky decisions in dorsal anterior cinguate cortex (dACC), anterior insula, ventral striatum, and lateral prefrontal cortex. Group comparisons across non-using controls, primary marijuana, primary alcohol, and alcohol and marijuana users revealed several notable differences in the recruitment of brain regions. Adolescents who use both alcohol and marijauna show decreased response during risky decision making compared to controls in insula, striatum, and thalamus, and reduced differentiation of increasing risk in dACC, insula, striatum, and superior parietal lobe compared to controls. These results provide evidence of differential engagement of risky decision making circuits among adolescents with varying levels of alcohol and marijuana use, and may provide useful targets for longitudinal studies that explicitly address causality of these differences.


Risk taking Marijuana Alcohol Adolescence 


Compliance with ethical standards


This study was funded by the National Institute on Alcohol Abuse and Alcoholism (AA017390).

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Univesrity of New Mexico Human Research Protection Office and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed assent (written) and informed parental/guardian consent (audiorecorded) were obtained for all individual participants included in the study.

Supplementary material

11682_2017_9723_Fig3_ESM.gif (288 kb)
Supplemental Figure 1

Regions that showed differences in the omnibus test across control, marijuana only, alcohol only, and marijuana + alcohol groups for the mean risk contrast controlling for a) age; b) CBCL; c) CDI; d) CASS-S; e) Gender; f) Hard drug use, past 3 months; g) Hard drug use, ever; h) IMPSS; i) RCMAS. (GIF 288 kb)

11682_2017_9723_MOESM1_ESM.tif (962 kb)
High Resolution Image (TIFF 961 kb)
11682_2017_9723_Fig4_ESM.gif (278 kb)
Supplemental Figure 2

Regions that showed differences in the omnibus test across control, marijuana only, alcohol only, and marijuana + alcohol groups for the linear risk contrast controlling for a) age; b) CBCL; c) CDI; d) CASS-S; e) Gender; f) Hard drug use, past 3 months; g) Hard drug use, ever; h) IMPSS; i) RCMAS. (GIF 278 kb)

11682_2017_9723_MOESM2_ESM.tif (941 kb)
High Resolution Image (TIFF 941 kb)
11682_2017_9723_Fig5_ESM.jpg (286 kb)
Supplemental Figure 3

Regions that showed differences in the omnibus test across control, marijuana only, alcohol only, and marijuana + alcohol groups for the mean risk (a) and linear risk (b) contrast controlling for age, gender, CBCL, CDI, CASS-S, Hard drug use past 3 months, Hard drug use ever, IMPSS, and RCMAS. (JPEG 286 kb)

11682_2017_9723_MOESM3_ESM.tif (236 kb)
High Resolution Image (TIFF 236 kb)
11682_2017_9723_MOESM4_ESM.docx (15 kb)
Supplementary Table 1 (DOCX 15 kb)


  1. Achenbach, T. M., & Edelbrock, C. (1991). Manual for the Child behavior checklist. Burlington: University of Vermont.Google Scholar
  2. Aklin, W., Lejuez, C., Zvolensky, M., Kahler, C., & Gwadz, M. (2005). Evaluation of behavioral measures of risk taking propensity with inner city adolescents. Behaviour Research and Therapy, 43, 215–228.CrossRefPubMedGoogle Scholar
  3. Alexander, W., & Brown, J. (2010). Competition between learned reward and error outcome predictions in anterior cingulate cortex. NeuroImage, 49, 3210–3218.CrossRefPubMedGoogle Scholar
  4. Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature, 14, 1338–1344.Google Scholar
  5. Bjork, J. M., Smith, A. R., Danube, C. L., & Hommer, D. W. (2007). Developmental differences in Posterior Mesofrontal cortex recruitment by risky rewards. The Journal of Neuroscience, 27, 4839–4849. doi: 10.1523/JNEUROSCI.5469-06.2007.CrossRefPubMedGoogle Scholar
  6. Bogg, T., Fukunaga, R., Finn, P. R., & Brown, J. W. (2012). Cognitive control links alcohol use, trait disinhibition, and reduced cognitive capacity: Evidence for medial prefrontal cortex dysregulation during reward-seeking behavior. Drug and Alcohol Dependence, 122, 112–118. doi: 10.1016/j.drugalcdep.2011.09.018.CrossRefPubMedGoogle Scholar
  7. Bornovalova, M., Cashman-Rolls, A., O'Donnell, J., Ettinger, K., Richards, J., deWit, H., et al. (2009). Risk taking differences on a behavioral task as a function of potential reward/loss magnitude and individual differences in impulsivity and sensation seeking. Pharmacology, Biochemistry, and Behavior, 93, 258–262.CrossRefPubMedGoogle Scholar
  8. Claus, E. D., & Hutchison, K. E. (2012). Neural mechanisms of risk taking and relationships with hazardous drinking. Alcoholism, Clinical and Experimental Research, 36, 932–940.CrossRefPubMedGoogle Scholar
  9. Conners, C. K., Wells, K. C., Parker, J. D. A., Sitarenios, G., Diamond, J. M., & Powell, J. W. (1997). A new self-report scale for the assessment of adolescent psychopathology: Factor structure, reliability, validity and diagnostic sensitivity. Journal of Abnormal Child Psychology, 25, 487–497.CrossRefPubMedGoogle Scholar
  10. Crowley, T. J., Raymond, K. M., Mikulich-Gilbertson, S. K., Thompson, L. L., & Lejuez, C. W. (2006). A risk-taking “set” in a novel task among adolescents with serious conduct and substance problems. Journal of the American Academy of Child and Adolescent Psychiatry, 45, 175–183.CrossRefPubMedGoogle Scholar
  11. Crowley, T. J., Dalwani, M. S., Mikulich-Gilbertson, S. K., Du, Y. P., Lejuez, C. W., Raymond, K. M., et al. (2010). Risky decisions and their consequences: Neural processing by boys with antisocial substance disorder. PloS One, 5, e12835.CrossRefPubMedPubMedCentralGoogle Scholar
  12. De Bellis, M. D., Wang, L., Bergman, S. R., Yaxley, R. H., Hooper, S. R., & Huettel, S. A. (2013). Neural mechanisms of risky decision-making and reward response in adolescent onset cannabis use disorder. Drug and Alcohol Dependence, 133, 134–145.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Deichmann, R., Gottfried, J., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19, 430–441.CrossRefPubMedGoogle Scholar
  14. Eklund, A., Nichols, T. E., Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 7900–7905. doi: 10.1073/pnas.1602413113.
  15. Feldstein Ewing, S. W., & Chung, T. (2013). Neuroimaging mechanisms of change in psychotherapy for addictive behaviors: Emerging translational approaches that bridge biology and behavior. Psychology of Addictive Behaviors, 27, 329–335.CrossRefPubMedGoogle Scholar
  16. Feldstein Ewing, S. W., Venner, K. L., Mead, H. K., & Bryan, A. D. (2011). Exploring racial/ethnic differences in substance use: A preliminary theory-based investigation with juvenile justice-involved youth. BMC Pediatrics, 11, 1–10.CrossRefGoogle Scholar
  17. Feldstein Ewing, S. W., Apodaca, T. R., & Gaume, J. (2016a). Ambivalence: Prerequisite for success in motivational interviewing with adolescents? Addiction, 111, 1900–1907.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Feldstein Ewing, S. W., Molina, B. S. G., & Tapert, S. F. (2016b). Uniting adolescent neuroimaging and treatment research: Recommendations in pursuit of improved integration. Neuroscience & Biobehavioral Reviews, 62, 109–114.CrossRefGoogle Scholar
  19. Fergusson, D. M., Horwood, L. J., & Swain-Campbell, N. (2002). Cannabis use and psychosocial adjustment in adolescence and young adulthood. Addiction, 97, 1123–1135.CrossRefPubMedGoogle Scholar
  20. Gruber, S. A., Dahlgren, M. K., Sagar, K. A., Gönenç, A., & Lukas, S. E. (2013). Worth the wait: Effects of age of onset of marijuana use on white matter and impulsivity. Psychopharmacology, 231, 1455–1465.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hanson, K. L., Thayer, R. E., & Tapert, S. F. (2014). Adolescent marijuana users have elevated risk-taking on the balloon analog risk task. Journal of Psychopharmacology, 28, 1080–1087.CrossRefPubMedGoogle Scholar
  22. Heitzeg, M. M., Nigg, J. T., Yau, W.-Y. W., Zucker, R. A., & Zubieta, J.-K. (2010). Striatal dysfunction marks preexisting risk and medial prefrontal dysfunction is related to problem drinking in children of alcoholics. Biological Psychiatry, 68, 287–295.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hsu, M., Krajbich, I., Zhao, C., & Camerer, C. F. (2009). Neural response to reward anticipation under risk is nonlinear in probabilities. Journal of Neuroscience, 29, 2231–2237.CrossRefPubMedGoogle Scholar
  24. Jacobus, J., Squeglia, L. M., Meruelo, A. D., Castro, N., Brumback, T., Giedd, J. N., et al. (2015). Developmental Cognitive Neuroscience, 16, 101–109.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.CrossRefPubMedGoogle Scholar
  26. Kann, L., Kinchen, S., Shanklin, S. L., Flint, K. H., Kawkins, J., Harris, W. A., et al. (2014). Youth risk behavior surveillance--United States, 2013. MMWR Surveill Summ, 63. Suppl, 4, 1–168.Google Scholar
  27. Knutson, B., Adams, C., Fong, G., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. Journal of Neuroscience, 21, 15.Google Scholar
  28. Kovacs, M. (2004). Children's depression inventory (CDI). Toronto: Multi-Health Systems Inc..Google Scholar
  29. Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., et al. (2002). Evaluation of a behavioral measure of risk taking: The balloon Analogue risk task (BART). Journal of Experimental Psychology: Applied, 8, 75–84.PubMedGoogle Scholar
  30. Lisdahl, K. M., Gilbart, E. R., Wright, N. E., & Shollenbarger, S. (2013). Dare to delay? The impacts of adolescent alcohol and marijuana use onset on cognition, brain structure, and function. Frontiers in Psychiatry, 4, 53.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu, X., Powell, D., Wang, H., Gold, B., Corbly, C., & Joseph, J. (2007). Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. The Journal of Neuroscience, 27, 4587–4597.CrossRefPubMedGoogle Scholar
  32. Lovero, K., Simmons, A., Aron, J., & Paulus, M. (2009). Anterior insular cortex anticipates impending stimulus significance. NeuroImage, 45, 976–983.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Magnan, R. E., Callahan, T. C., Ladd, B. O., Claus, E., Hutchison, K., & Bryan, A. D. (2013). Evaluating an integrative theoretical framework for HIV sexual risk among juvenile justice involved adolescents. Journal of AIDS & Clinical Research, 4, 217.CrossRefGoogle Scholar
  34. Meier, M.H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R.S.E., et al. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109, E2657–64.Google Scholar
  35. Norman, A. L., Pulido, C., Squeglia, L. M., Spadoni, A. D., Paulus, M. P., & Tapert, S. F. (2011). Neural activation during inhibition predicts initiation of substance use in adolescence. Drug and Alcohol Dependence, 119, 216–223.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., & Stein, M. B. (2003). Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. NeuroImage, 19, 1439–1448.CrossRefPubMedGoogle Scholar
  37. Reynolds, C. R., & Richmond, B. O. (1985). Revised Children's manifest anxiety scale. RCMAS manual. Los Angeles: Western Psychological Services.Google Scholar
  38. Robbins, R. N., & Bryan, A. (2004). Relationships between future orientation, impulsive sensation seeking, and risk behavior among adjudicated adolescents. Journal of Adolescent Research, 19, 428–445.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Roberts, R. E., Roberts, C. R., Xing, Y. (2007). Comorbidity of substance use disorders and other psychiatric disorders among adolescents: Evidence from an epidemiologic survey. Drug and Alcohol Dependence, 88, S4–S13. doi: 10.1016/j.drugalcdep.2006.12.010.
  40. Rolls, E., McCabe, C., & Redoute, J. (2008). Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cerebral Cortex, 18, 652–663.CrossRefPubMedGoogle Scholar
  41. Schneider, S., Peters, J., Bromberg, U., Brassen, S., Miedl, S. F., Banaschewski, T., et al. (2012). Risk taking and the adolescent reward system: A potential common link to substance abuse. The American Journal of Psychiatry, 169, 39–46.CrossRefPubMedGoogle Scholar
  42. Schonberg, T., Fox, C. R., Mumford, J. A., Congdon, E., Trepel, C., & Poldrack, R. A. (2012). Decreasing ventromedial prefrontal cortex activity during sequential risk-taking: An fMRI investigation of the balloon analog risk task. Frontiers in Neuroscience, 6, 1–11.CrossRefGoogle Scholar
  43. Schuler, M. S., Vasilenko, S. A., & Lanza, S. T. (2015). Age-varying associations between substance use behaviors and depressive symptoms during adolescence and young adulthood. Drug and Alcohol Dependence, 157, 75–82.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Schweinsburg, A. D., Paulus, M. P., Barlett, V. C., Killeen, L. A., Caldwell, L. C., Pulido, C., et al. (2004). An FMRI study of response inhibition in youths with a family history of alcoholism. Annals of the New York Academy of Sciences, 1021, 391–394.CrossRefPubMedGoogle Scholar
  45. Shedler, J., & Block, J. (1990). Adolescent drug use and psychological health. A longitudinal inquiry. American Psychologist, 45, 612–630.CrossRefPubMedGoogle Scholar
  46. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17, 143–155.CrossRefPubMedGoogle Scholar
  47. Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219.CrossRefPubMedGoogle Scholar
  48. Sobell, L., & Sobell, M. (1992). Timeline follow-back: a technique for assessing self-reported alcohol consumption. In R. Z. Litten & J. Allen (Eds.), Measuring Alcohol Consumption: Psychosocial and Biochemical Methods (pp. 41–72). Totawa, NJ: Humana Press. doi: 10.1007/978-1-4612-0357-5_3.
  49. Somerville, L. H., & Casey, B. (2010). Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology, 20, 236–241.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Squeglia, L. M., Rinker, D. A., Bartsch, H., Castro, N., Chung, Y., Dale, A. M., et al. (2014). Brain volume reductions in adolescent heavy drinkers. Developmental Cognitive Neuroscience, 9, 117–125.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tucker, J. S., Ellickson, P. L., Collins, R. L., & Klein, D. J. (2006). Are drug experimenters better adjusted than abstainers and users?: A longitudinal study of adolescent marijuana use. Journal of Adolescent Health, 39, 488–494.CrossRefPubMedGoogle Scholar
  52. Van Leijenhorst, L., Crone, E., & Bunge, S. (2006). Neural correlates of developmental differences in risk estimation and feedback processing. Neuropsychologia, 44, 2158–2170.CrossRefPubMedGoogle Scholar
  53. Vickery, T. J., & Jiang, Y. V. (2008). Inferior parietal lobule supports decision making under uncertainty in humans. Cerebral Cortex, 19, 916–925.CrossRefPubMedGoogle Scholar
  54. Weiland, B. J., Thayer, R. E., Depue, B. E., Sabbineni, A., Bryan, A. D., & Hutchison, K. E. (2015). Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. Journal of Neuroscience, 35, 1505–1512.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wetherill, R. R., Squeglia, L. M., Yang, T. T., & Tapert, S. F. (2013). A longitudinal examination of adolescent response inhibition: Neural differences before and after the initiation of heavy drinking. Psychopharmacology, 230, 663–671.CrossRefPubMedGoogle Scholar
  56. White, H. R., Marmorstein, N. R., Crews, F. T., Bates, M. E., Mun, E. Y., & Loeber, R. (2010). Associations between heavy drinking and changes in impulsive behavior among adolescent boys. Alcoholism, Clinical and Experimental Research, 35, 295–303.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Woolrich, M., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. (2004). Multilevel linear modelling for FMRI group analysis using Bayesian inference. NeuroImage, 21, 1732–1747.CrossRefPubMedGoogle Scholar
  58. Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K., & Evans, A. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.CrossRefPubMedGoogle Scholar
  59. Zuckerman, M., Kuhlman, D., Joireman, J., Teta, P., & Kraft, M. (1993). A comparison of three structural models for personality: The big three, the big five, and the alternative five. Journal of Personality and Social Psychology, 65, 757–768.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Eric D. Claus
    • 1
  • Sarah W. Feldstein Ewing
    • 2
  • Renee E. Magnan
    • 3
  • Erika Montanaro
    • 4
  • Kent E. Hutchison
    • 1
    • 5
  • Angela D. Bryan
    • 1
    • 5
  1. 1.The Mind Research Network and Lovelace Biomedical and Environmental Research InstituteAlbuquerqueUSA
  2. 2.Department of PsychiatryOregon Health & Science UniversityPortlandUSA
  3. 3.Psychology DepartmentWashington State University VancouverVancouverUSA
  4. 4.Center for Interdisciplinary Research on AIDSYale UniversityNew HavenUSA
  5. 5.Department of Psychology and NeuroscienceUniversity of Colorado BoulderBoulderUSA

Personalised recommendations