Skip to main content

Advertisement

Log in

In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Adjuvant chemotherapy has been used for decades to treat cancer, and it is well known that disruptions in cognitive function and memory are common chemotherapeutic adverse effects. However, studies using neuropsychological metrics have also reported group differences in cognitive function and memory before or without chemotherapy, suggesting that complex factors obscure the true etiology of chemotherapy-induced cognitive dysfunction (CICD) in humans. Therefore, to better understand possible mechanisms of CICD, we explored the effects of CICD in rats through cognition testing using novel object recognition (NOR) and contextual fear conditioning (CFC), and through metabolic neuroimaging via [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Cancer-naïve, female Sprague-Dawley rats were administered either saline (1 mL/kg) or doxorubicin (DOX) (1 mg/kg in a volume of 1 mL/kg) weekly for five weeks (total dose = 5 mg/kg), and underwent cognition testing and PET imaging immediately following the treatment regime and 30 days post treatment. We did not observe significant differences with CFC testing post-treatment for either group. However, the chemotherapy group exhibited significantly decreased performance in the NOR test and decreased 18F-FDG uptake only in the prefrontal cortex 30 days post-treatment. These results suggest that long-term impairment within the prefrontal cortex is a plausible mechanism of CICD in this study, suggesting DOX-induced toxicity in the prefrontal cortex at the dose used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemiuex, S., & Kuwabara, H. (2008). Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer, 8(1), 88–91.

    Article  PubMed  Google Scholar 

  • Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer, 7(3), 192–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahles, T. A., Saykin, A. J., Furstenberg, C. T., Cole, B., Mott, L. A., Skalla, K., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol, 20(2), 485–493.

    Article  CAS  PubMed  Google Scholar 

  • Ahles, T. A., Saykin, A. J., McDonald, B. C., Furstenberg, C. T., Cole, B. F., Hanscom, B. S., et al. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat, 110(1), 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1995). Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol Learn Mem, 64(3), 191–194.

    Article  CAS  PubMed  Google Scholar 

  • Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci, 19(3), 1106–1114.

    CAS  PubMed  Google Scholar 

  • Anderson-Hanley, C., Sherman, M. L., Riggs, R., Agocha, V. B., & Compas, B. E. (2003). Neuropsychological effects of treatments for adults with cancer: a meta-analysis and review of the literature. J Int Neuropsychol Soc, 9(7), 967–982.

    Article  PubMed  Google Scholar 

  • Bender, C. M., Sereika, S. M., Berga, S. L., Vogel, V. G., Brufsky, A. M., Paraska, K. K., & Ryan, C. M. (2006). Cognitive impairment associated with adjuvant therapy in breast cancer. Psychooncology, 15(5), 422–430.

    Article  PubMed  Google Scholar 

  • Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc, 1(3), 1306–1311.

    Article  PubMed  Google Scholar 

  • Bloom, A. S., LaViolette, P. S., Chitambar, C. R., Collier, W., Durgerian, S. J., Kalyanaraman, B., et al. (2010). Effects of doxorubicin on brain activity and functional connectivity in rats. Proc Int Soc Magn Reson Med, 18, 1229.

  • Boles Ponto, L. L., Menda, Y., Magnotta, V. A., Yamada, T. H., Denburg, N. L., & Schultz, S. K. (2015). Frontal hypometabolism in elderly breast cancer survivors determined by [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET): a pilot study. Int J Geriatr Psychiatry, 30(6), 587–594.

    Article  Google Scholar 

  • Brezden, C. B., Phillips, K.-A., Abdolell, M., Bunston, T., & Tannock, I. F. (2000). Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol, 18(14), 2695–2701.

    Article  CAS  PubMed  Google Scholar 

  • Byun, N. E., Grannan, M., Bubser, M., Barry, R. L., Thompson, A., Rosanelli, J., et al. (2014). Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology, 39(7), 1578–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie, L.-A., Acharya, M. M., Parihar, V. K., Nguyen, A., Martirosian, V., & Limoli, C. L. (2012). Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res, 18(7), 1954–1965.

    Article  CAS  PubMed  Google Scholar 

  • de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S. A. M., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp, 32(8), 1206–1219.

    Article  PubMed  Google Scholar 

  • Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol, 30(3), 274–281.

    Article  PubMed  Google Scholar 

  • Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res, 31(1), 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Ennaceur, A., & Meliani, K. (1992). A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behavioural Brain Research, 51(1), 83–92.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, J. R., & Broshek, D. K. (2002). Assessing cognitive dysfunction in breast cancer: what are the tools? Clin Breast Cancer, 3(Suppl 3), S91–S99.

    Article  PubMed  Google Scholar 

  • Fremouw, T., Fessler, C. L., Ferguson, R. J., & Burguete, Y. (2012). Preserved learning and memory in mice following chemotherapy: 5-Fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment. Behav Brain Res, 226(1), 154–162.

    Article  CAS  PubMed  Google Scholar 

  • Grayson, B., Idris, N. F., & Neill, J. C. (2007). Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res, 184(1), 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Hede, K. (2008). Chemobrain is real but may need new name. J Natl Cancer Inst, 100(3), 162–3,169.

    Article  PubMed  Google Scholar 

  • Hess, L. M., & Insel, K. C. (2007). Chemotherapy-related change in cognitive function: a conceptual model. Oncol Nurs Forum, 34(5), 981–994.

    Article  PubMed  Google Scholar 

  • Hurria, A., Somlo, G., & Ahles, T. (2007). Renaming “chemobrain.”. Cancer Invest, 25(6), 373–377.

    Article  PubMed  Google Scholar 

  • Jansen, C. E., Cooper, B. A., Dodd, M. J., & Miaskowski, C. A. (2011). A prospective longitudinal study of chemotherapy-induced cognitive changes in breast cancer patients. Support Care Cancer, 19(10), 1647–1656.

    Article  PubMed  Google Scholar 

  • Jarrett, B. L. (2013). Chemotherapy induced deficits in cognition and affective behavior. Ph.D. Thesis, Ohio State University, Neuroscience Graduate Studies Program.

  • Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y.-H., et al. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol, 30(29), 3578–3587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser, J., Bledowski, C., & Dietrich, J. (2014). Neural correlates of chemotherapy-related cognitive impairment. Cortex, 54, 33–50.

    Article  PubMed  Google Scholar 

  • Kesler, S. R. (2014). Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging, 35(Suppl 2), S11–S19.

    Article  CAS  PubMed  Google Scholar 

  • Kesler, S. R., Kent, J. S., & O'Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Arch Neurol, 68(11), 1447–1453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liedke, P. E. R., Reolon, G. K., Kilpp, B., Brunetto, A. L., Roesler, R., & Schwartsmann, G. (2009). Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav, 94(2), 239–243.

    Article  CAS  PubMed  Google Scholar 

  • Loening, A. M., & Gambhir, S. S. (2003). AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging, 2(3), 131–137.

    Article  PubMed  Google Scholar 

  • Maren, S., & Fanselow, M. S. (1997). Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem, 67(2), 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res, 88(2), 261–274.

    Article  CAS  PubMed  Google Scholar 

  • McAllister, T. W., Ahles, T. A., Saykin, A. J., Ferguson, R. J., McDonald, B. C., Lewis, L. D., et al. (2004). Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep, 6(5), 364–371.

    Article  PubMed  Google Scholar 

  • McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat, 123(3), 819–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol, 30(20), 2500–2508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyers, C. A., & Scheibel, R. S. (1990). Early detection and diagnosis of neurobehavioral disorders associated with cancer and its treatment. Oncology (Williston Park), 4(7), 115–122 126–127,130.

    CAS  Google Scholar 

  • Meyers, C. A., Byrne, K. S., & Komaki, R. (1995). Cognitive deficits in patients with small cell lung cancer before and after chemotherapy. Lung Cancer, 12(3), 231–235.

    Article  CAS  PubMed  Google Scholar 

  • Minisini, A., Atalay, G., Bottomley, A., Puglisi, F., Piccart, M., & Biganzoli, L. (2004). What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol, 5(5), 273–282.

    Article  PubMed  Google Scholar 

  • Momparler, R. L., Karon, M., Siegel, S. E., & Avila, F. (1976). Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 36(8), 2891–2895.

    CAS  PubMed  Google Scholar 

  • Newhouse, P., & Dumas, J. (2015). Estrogen-cholinergic interactions: implications for cognitive aging. Horm Behav, 74, 173–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nudelman, K. N. H., Wang, Y., McDonald, B. C., Conroy, S. K., Smith, D. J., West, J. D., et al. (2014). Altered cerebral blood flow one month after systemic chemotherapy for breast cancer: a prospective study using pulsed arterial spin labeling MRI perfusion. PLoS One, 9(5), e96713.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Shaughnessy, J. A. (2002). Effects of epoetin alfa on cognitive function, mood, asthenia, and quality of life in women with breast cancer undergoing adjuvant chemotherapy. Clin Breast Cancer, 3(Suppl 3), S116–S120.

    Article  PubMed  Google Scholar 

  • Rubins, D. J., Melega, W. P., Lacan, G., Way, B., Plenevaux, A., Luxen, A., & Cherry, S. R. (2003). Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage, 20(4), 2100–2118.

    Article  PubMed  Google Scholar 

  • Saykin, A. J., Ahles, T. A., Schoenfeld, J. D., Wishart, H. A., Pietras, C. G., Furstenberg, C. T., et al. (2003). Gray matter reduction on voxel-based morphometry in chemotherapy-treated cancer survivors. J Int Neuropsychol Soc, 9(2), 246.

    Google Scholar 

  • Saykin, A. J., de Ruiter, M. B., McDonald, B. C., Deprez, S., & Silverman, D. H. S. (2013). Neuroimaging biomarkers and cognitive function in non-CNS cancer and its treatment: current status and recommendations for future research. Brain Imaging Behav, 7(4), 363–373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schagen, S. B., van Dam, F. S. A. M., Muller, M. J., Boogerd, W., Lindeboom, J., & Bruning, P. F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer, 85(3), 640–650.

    Article  CAS  PubMed  Google Scholar 

  • Schagen, S. B., Das, E., & van Dam, F. S. A. M. (2009). The influence of priming and pre-existing knowledge of chemotherapy-associated cognitive complaints on the reporting of such complaints in breast cancer patients. Psychooncology, 18(6), 674–678.

    Article  PubMed  Google Scholar 

  • Schilder, C. M., Seynaeve, C., Beex, L. V., Boogerd, W., Linn, S. C., Gundy, C. M., et al. (2010a). Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. J Clin Oncol, 28(8), 1294–1300.

    Article  CAS  PubMed  Google Scholar 

  • Schilder, C. M. T., Seynaeve, C., Linn, S. C., Boogerd, W., Beex, L. V. A. M., Gundy, C. M., et al. (2010b). Cognitive functioning of postmenopausal breast cancer patients before adjuvant systemic therapy, and its association with medical and psychological factors. Crit Rev Oncol Hematol, 76(2), 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Schilder, C. M., Seynaeve, C., Linn, S. C., Boogerd, W., Gundy, C. M., Beex, L. V., et al. (2010c). The impact of different definitions and reference groups on the prevalence of cognitive impairment: a study in postmenopausal breast cancer patients before the start of adjuvant systemic therapy. Psychooncology, 19(4), 415–422.

    Article  PubMed  Google Scholar 

  • Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neuroscience and Biobehavioral Reviews, 35(3), 729–741.

    Article  PubMed  Google Scholar 

  • Seigers, R., Schagen, S. B., Van Tellingen, O., & Dietrich, J. (2013). Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging and Behavior, 7(4), 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Seigers, R., Loos, M., Van Tellingen, O., Boogerd, W., Smit, A. B., & Schagen, S. B. (2015). Cognitive impact of cytotoxic agents in mice. Psychopharmacology, 232(1), 17–37.

    Article  CAS  PubMed  Google Scholar 

  • Selamat, M. H., Loh, S. Y., Mackenzie, L., & Vardy, J. (2014). Chemobrain experienced by breast cancer survivors: a meta-ethnography study investigating research and care implications. PloS One, 9(9), e108002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silberfarb, P. M., Philibert, D., & Levine, P. M. (1980). Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. The American Journal of Psychiatry, 137(5), 597–601.

    Article  CAS  PubMed  Google Scholar 

  • Silverman, D. H. S., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Research and Treatment, 103(3), 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Stemmer, S. M., Stears, J. C., Burton, B. S., Jones, R. B., & Simon, J. H. (1994). White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. AJNR. American Journal of Neuroradiology, 15(7), 1267–1273.

    CAS  PubMed  Google Scholar 

  • U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2005). Guidance for industry: Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. MD: Rockville http://www.fda.gov/downloads/Guidances/UCM078932.pdf.

    Google Scholar 

  • van Dam, F. S. A. M., Schagen, S. B., Muller, M. J., Boogerd, W., van der Wall, E., Droogleever Fortuyn, M. E., & Rodenhuis, S. (1998). Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. Journal of the National Cancer Institute, 90(3), 210–218.

    Article  PubMed  Google Scholar 

  • Vardy, J. (2009). Cognitive function in breast cancer survivors. Cancer Treatment and Research, 151, 387–419.

    Article  PubMed  Google Scholar 

  • Vardy, J., Rourke, S., & Tannock, I. F. (2007). Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. Journal of Clinical Oncology, 25(17), 2455–2463.

    Article  PubMed  Google Scholar 

  • Von Ah, D., Storey, S., Jansen, C. E., & Allen, D. H. (2013). Coping strategies and interventions for cognitive changes in patients with cancer. Seminars in Oncology Nursing, 29(4), 288–299.

    Article  PubMed  Google Scholar 

  • Wallenstein, G. V., & Vago, D. R. (2001). Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiology of Learning and Memory, 75(3), 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Watson, D. J. G., Loiseau, F., Ingallinesi, M., Millan, M. J., Marsden, C. A., & Fone, K. C. F. (2012). Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology, 37(3), 770–786.

    Article  CAS  PubMed  Google Scholar 

  • Wefel, J. S., Kayl, A. E., & Meyers, C. A. (2004). Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. British Journal of Cancer, 90(9), 1691–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss, B. (2008). Chemobrain: a translational challenge for neurotoxicology. Neurotoxicology, 29(5), 891–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieneke, M. H., & Dienst, E. R. (1995). Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psychooncology, 4(1), 61–66.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the American Cancer Society (IRG-58-009-51 to C.C.Q.). The authors thank Dr. M. Scott Thompson at the Vanderbilt University Medical Center Oncology Pharmacy; Dr. Randy L. Smith Barrett at the Vanderbilt University School of Medicine Rat Neurobehavioral Core; and Fuxue Xin and Dr. Zou Yue at the Vanderbilt University Institute of Imaging Science Center for Small Animal Imaging. We also acknowledge Mackenzie Whitehurst for her assistance in analyzing the novel object recognition data and Tanner Liddy for his assistance in analyzing the contextual fear conditioning data. Finally, we thank Mrs. Joan M. Gee for asking the question “I wonder what chemotherapy will do to my brain?”; her personal experiences with breast cancer and chemotherapy in 2010 was the motivation for this study.

Author contributions

 Concept and study design: Barry, Byun, Gee, Quarles

Development of methodology: Barry, Byun, Tantawy, Wilson

Acquisition of data: Barry, Byun, Tantawy, Wilson, Gee

Analysis and interpretation of data: Barry, Byun, Tantawy, Mackey, Flom, Stark

Writing, reviewing, and revising manuscript: Barry, Byun, Tantawy, Quarles

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Barry.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Additional information

Robert L. Barry and Nellie E. Byun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barry, R.L., Byun, N.E., Tantawy, M.N. et al. In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction. Brain Imaging and Behavior 12, 87–95 (2018). https://doi.org/10.1007/s11682-017-9674-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-017-9674-2

Keywords

Navigation