Skip to main content
Log in

Data-driven analysis of functional brain interactions during free listening to music and speech

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Natural stimulus functional magnetic resonance imaging (N-fMRI) such as fMRI acquired when participants were watching video streams or listening to audio streams has been increasingly used to investigate functional mechanisms of the human brain in recent years. One of the fundamental challenges in functional brain mapping based on N-fMRI is to model the brain’s functional responses to continuous, naturalistic and dynamic natural stimuli. To address this challenge, in this paper we present a data-driven approach to exploring functional interactions in the human brain during free listening to music and speech streams. Specifically, we model the brain responses using N-fMRI by measuring the functional interactions on large-scale brain networks with intrinsically established structural correspondence, and perform music and speech classification tasks to guide the systematic identification of consistent and discriminative functional interactions when multiple subjects were listening music and speech in multiple categories. The underlying premise is that the functional interactions derived from N-fMRI data of multiple subjects should exhibit both consistency and discriminability. Our experimental results show that a variety of brain systems including attention, memory, auditory/language, emotion, and action networks are among the most relevant brain systems involved in classic music, pop music and speech differentiation. Our study provides an alternative approach to investigating the human brain’s mechanism in comprehension of complex natural music and speech.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It is the number of entries in the upper triangular of the 358 × 358 functional interaction matrix with the diagonal removed, i.e., 63903 = (358 × 358–358)/2.

  2. 200 functional interactions are chosen based on the later experiment on consistently discriminative functional interactions.

References

  • Alluri, V., Toiviainen, P., Jääskeläinen, I. P., Glerean, E., Sams, M., & Brattico, E. (2012). Large-scale brain networks emerge from dynamic processing of musical timbre, key, and rhythm. NeuroImage, 59, 3677–3689.

    Article  PubMed  Google Scholar 

  • Bandettini, P. A., Jesmanowicz, A., et al. (1998). Functional MRI of brain activation induced by scanner acoustic noise. Magnetic Resonance in Medicine, 39(3), 410–416.

    Article  CAS  PubMed  Google Scholar 

  • Bartels, A., Zeki, S., & Logothetis, N. (2008). Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cerebral Cortex, 18, 705–717.

    Article  CAS  PubMed  Google Scholar 

  • Berti, S., & Schröger, E. (2003). Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. European Journal of Neuroscience, 17, 1119–1122.

    Article  PubMed  Google Scholar 

  • Blinkenberg, M., Bonde, C., Holm, S., et al. (1996). Rate dependence of regional cerebral activation during performance of a repetitive motor task: a PET study. Journal of Cerebral Blood Flow and Metabolism, 16, 794–803.

    Article  CAS  PubMed  Google Scholar 

  • Bordier, C., Puja, F., & Macaluso, E. (2012). Sensory processing during viewing of cinematographic material: Computational modeling and functional neuroimaging. NeuroImage, 67, 213–226.

    Article  PubMed  Google Scholar 

  • Brosch, T., Sander, D., Pourtois, G., & Scherer, K. R. (2008). Beyond fear: Rapid spatial orienting toward positive emotional stimuli. Psychological Science, 19, 362–370.

    Article  PubMed  Google Scholar 

  • Cathy, J. P. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–847.

    Article  Google Scholar 

  • Chang, C., & Glover, G. H. (2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage, 50, 81–98.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, M., Han, J., Hu, X., Jiang, X., Guo, L., & Liu, T. (2013). Survey of encoding and decoding of visual stimulus via FMRI: an image analysis perspective. Brain Imaging and Behavior. doi:10.1007/s11682-013-9238-z.

    PubMed  Google Scholar 

  • Duda, R., Hart, P., & Stork, D. G. (2001). Pattern classification (2nd ed.). New York: Wiley.

    Google Scholar 

  • Escoffier, N., Zhong, J., Schirmer, A., & Qiu, A. (2012). Emotional expressions in voice and music: Same code, same effect? Human Brain Mapping, 34, 1796–1810.

    Article  PubMed  Google Scholar 

  • Formisano, E., De Martino, F., Bonte, M., & Goebel, R. (2008). “Who” is saying “What”? Brain-based decoding of human voice and speech. Science, 322, 970–973.

    Article  CAS  PubMed  Google Scholar 

  • Friston, K. J. (2009). Modalities, modes, and models in functional neuroimaging. Science Signaling, 326, 399–403.

    CAS  Google Scholar 

  • Golland, Y., Bentin, S., Gelbard, H., et al. (2007). Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cerebral Cortex, 17, 766–777.

    Article  PubMed  Google Scholar 

  • Hagmann, P., Cammoun, L., Gigandet, X., Gerhard, S., Ellen Grant, P., Wedeen, V., & Sporns, O. (2010). MR connectomics: principles and challenges. Journal of neuroscience methods, 194(1), 34–45.

    Article  PubMed  Google Scholar 

  • Han, J., Ji, X., Hu, X., Zhu, D., Li, K., Jiang, X., Cui, G., Guo, L., & Liu, T. (2013). Representing and retrieving video shots in human-centric brain imaging space. IEEE Transactions on Image Processing, 22, 2723–2736.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural stimulation. Trends in Cognitive Science, 14, 40–48.

    Article  Google Scholar 

  • Haynes, J. D., & Rees, G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523–534.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Li, K., Han, J., Hua, X., Guo, L., & Liu, T. (2012). Bridging the Semantic Gap via Functional Brain Imaging. Multimedia, IEEE Transactions on, 14, 314–325.

    Article  Google Scholar 

  • Hu, X., Deng, F., Li, K., Zhang, T., Chen, H., Jiang, X., Lv, J., Zhu, D., Faraco, C., & Zhang, D. (2010). Bridging low-level features and high-level semantics via fMRI brain imaging for video classification (pp. 451–460). Firenze: Proceedings of the International Conference on Multimedia: ICM. ACM.

    Google Scholar 

  • Janata, P., Birk, J. L., Van Horn, J. D., Leman, M., Tillmann, B., & Bharucha, J. J. (2002). The cortical topography of tonal structures underlying western music. Science, 298, 2167–2170.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X., Zhang, T., Hu, X., Lu, L., Han, J., Guo, L., Liu, T., 2012. Music/speech classification using high-level features derived from fMRI brain imaging. Proceedings of the 20th ACM International Conference on Multimedia: ACMMM. ACM, pp. 825–828.

  • Juslin, P. N., & Vastfjall, D. (2008). Emotional responses to music: the need to consider underlying mechanisms. Behavioral and brain sciences, 31, 559–575.

    Article  PubMed  Google Scholar 

  • Khalfa, S., Schon, D., Anton, J. L., & Lie’geois-Chauvel, C. (2005). Brain regions involved in the recognition of happiness and sadness in music. Neuroreport, 16, 1981–1984.

    Article  PubMed  Google Scholar 

  • Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current opinion in neurobiology, 15, 207–212.

    Article  CAS  PubMed  Google Scholar 

  • Koelsch, S., Fritz, T., Müller, K., & Friederici, A. D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239–250.

    Article  PubMed  Google Scholar 

  • Koelsch, S. (2009). Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN. Psychophysiology, 46, 179–190.

    Article  PubMed  Google Scholar 

  • Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Science, 14, 131–137.

    Article  Google Scholar 

  • Koelsch, S. (2011a). Towards a neural basis of processing musical semantics. Physics of life reviews, 8, 89–105.

    PubMed  Google Scholar 

  • Koelsch, S. (2011b). Toward a neural basis of music perception - a review and updated model. Frontiers in Psychology, 2, 110.

    PubMed Central  PubMed  Google Scholar 

  • Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21, 1–6.

    Article  Google Scholar 

  • Kononenko, I., 1994. Estimating attributes: analysis and extension of RELIEF. Proceedings of the European Conference on Machine Learning: ECML. Springer, pp: 171–182.

  • Kreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. Journal of behavioral medicine, 27, 623–635.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–78.

    Article  PubMed  Google Scholar 

  • Laird, A.R., Eickhoff, S.B., et al., 2009. ALE meta-analysis workflows via the BrainMap database: Progress towards a probabilistic functional brain atlas. Frontiers in neuroinformatics, 3

  • Langers, D. R. M., Van Dijk, P., & Backes, W. H. (2005). Interactions between hemodynamic responses to scanner acoustic noise and auditory stimuli in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 53(1), 49–60.

    Article  PubMed  Google Scholar 

  • Lee, T. W., Dolan, R. J., & Critchley, H. D. (2008). Controlling emotional expression: Behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 18, 104–113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lew, M. S., Sebe, N., Djeraba, C., & Jain, R. (2006). Content-based multimedia information retrieval: State of the art and challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 2(1), 1–19.

    Article  Google Scholar 

  • Li, K., Guo, L., Li, G., et al. (2010). Cortical surface based identification of brain networks using high spatial resolution resting state fMRI data. IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2010, 656–659.

    Google Scholar 

  • Li, K., Zhu, D., Guo, L., et al. (2012). Connectomics Signatures of Prenatal Cocaine Exposure Affected Adolescent Brains. Human Brain Mapping. doi:10.1002/hbm.22082.

    Google Scholar 

  • Liu, H., Setiono, R., 1995. Chi2: Feature selection and discretization of numeric attributes. Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence. IEEE, pp: 388–391

  • Liu, T., Shen, D., & Davatzikos, C. (2004). Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4), 1790–1801.

    Article  PubMed  Google Scholar 

  • Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5, 189–202.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mechler, F., Vicotr, J., Purpura, K., & Shapley, R. (1998). Robust temporal coding of contrast by V1 neurons for transient but not for steady-state stimuli. Journal of Neuroscience, 18, 6583–6598.

    CAS  PubMed  Google Scholar 

  • Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine under test. Neurocomputing, 55, 169–186.

    Article  Google Scholar 

  • Mitterschiffthaler, M., Fu, C., Dalton, J., Andrew, C., & Williams, S. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28, 1150–1162.

    Article  PubMed  Google Scholar 

  • Murcia, C. Q., Bongard, S., & Kreutz, G. (2009). Emotional and neurohumoral responses to dancing tango argentino. Music and Medicine, 1, 14–21.

    Article  Google Scholar 

  • Näätänen, R., Tervaniemi, M., Sussman, E., Paavilainen, P., & Winkler, I. (2001). Primitive intelligence in the auditory cortex. Trends in Neurosciences, 24, 283–288.

    Article  PubMed  Google Scholar 

  • Najib, A., Lorberbaum, J. P., Kose, S., Bohning, D. E., & George, M. S. (2004). Regional brain activity in women grieving a romantic relationship breakup. American Journal of Psychiatry, 161, 2245–2256.

    Article  PubMed  Google Scholar 

  • Nishimoto, S., Vu, A. T., Naselaris, T., Benjamini, Y., Yu, B., & Gallant, J. L. (2011). Reconstructing visual experiences from brain activity evoked by natural movies. Current Biology, 21, 1641–1646.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogawa, A., Cecile, B., & Emiliano, M. (2013). Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses. PloS one, 8(10), e76003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3, 606–616.

    Article  CAS  PubMed  Google Scholar 

  • Peretz, I., Zatorre, R.J., 2003. The Cognitive Neuroscience of Music. Oxford University Press, 2003.

  • Peters, J., & Buchel, C. (2009). Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making. Journal of Neuroscience, 29, 15727–15734.

    Article  CAS  PubMed  Google Scholar 

  • Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., & Van De Ville, D. (2011). Decoding brain states from fMRI connectivity graphs. NeuroImage, 56(2), 616–626.

    Article  PubMed  Google Scholar 

  • Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral cortex, 22(1), 158–165.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith, G. S., Reynolds, C. F., Pollock, B. G., et al. (2012). Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. American Journal of Psychiatry, 156, 683–689.

    Google Scholar 

  • Staeren, N., Hanna, R., Federico, D. M., Rainer, G., & Elia, F. (2009). Sound categories are represented as distributed patterns in the human auditory cortex. Current Biology, 19, 498–502.

    Article  CAS  PubMed  Google Scholar 

  • Stokes, M., Thompson, R., Cusack, R., & Duncan, J. (2009). Top-down activation of shape specific population codes in visual cortex during mental imagery. The Journal of Neuroscience, 29, 1565–1572.

    Article  CAS  PubMed  Google Scholar 

  • Stokes, M., Saraiva, A., Rohenkohl, G., & Nobre, A. C. (2011). Imagery for shapes activates position-invariant representations in human visual cortex. NeuroImage, 56, 1540–1545.

    Article  PubMed  Google Scholar 

  • Tzanetakis, G., & Cook, P. (2002). Musical genre classification of audio signals. Speech and Audio Processing, IEEE Transactions on, 10, 293–302.

    Article  Google Scholar 

  • Yao, H., Shi, L., Han, F., Gao, H., & Dan, Y. (2007). Rapid learning in cortical coding of visual scenes. Nature neuroscience, 10, 772–778.

    Article  CAS  PubMed  Google Scholar 

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan, Y., Jiang, X., et al. (2013). Meta-analysis of functional roles of DICCCOLs. Neuroinformatics, 11, 47–63.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, Y., Han, J., Hu, X., Guo, L., Liu, T., 2013. Data-driven evaluation of functional connectivity metrics. 2013 I.E. 10th International Symposium on Biomedical Imaging: ISBI. IEEE, pp: 532–535.

  • Zheng, Z., Fred, M., 2010. Advancing feature selection research. ASU feature selection repository

  • Zhu, D., Li, K., Guo, L., et al. (2012). DICCCOL: dense individualized and common connectivity-based landmarks. Cerebral Cortex, 23, 786–800.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

J Fang was supported by the National Natural Science Foundation of China under Grant 61202186. T Liu was supported by NIH Career Award (NIH EB 006878), NSF CAREER Award (IIS-1149260), NIH R01 DA033393, NSF BME-1302089 and NIH R01 AG-042599. X Hu was supported by the National Natural Science Foundation of China under Grant 61103061, China Postdoctoral Science Foundation under Grant 20110490174 and 2012 T50819, and Program for New Century Excellent Talents in University under grant NCET-13-0472. L Guo was supported by the National Natural Science Foundation of China under Grant 61273362 and 61333017. J Han was supported by the National Science Foundation of China under Grant 61005018 and 91120005, NPU-FFR-JC20120237 and Program for New Century Excellent Talents in University under grant NCET-10-0079.

Conflict of Interest

Jun Fang, Xintao Hu, Junwei Han, Xi Jiang, Dajiang Zhu, Lei Guo, Tianming Liu declare that they have no conflict of interest.

Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xintao Hu or Junwei Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, J., Hu, X., Han, J. et al. Data-driven analysis of functional brain interactions during free listening to music and speech. Brain Imaging and Behavior 9, 162–177 (2015). https://doi.org/10.1007/s11682-014-9293-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9293-0

Keywords

Navigation