Skip to main content
Log in

Adhesion Behavior of Escherichia coli on Plasma-Sprayed Zn and Ag Co-incorporated Calcium Silicate Coatings with Varying Surface Roughness

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Our previous work demonstrated the good biocompatibility and bactericidal activity of a plasma-sprayed Zn and Ag co-incorporated calcium silicate ceramic coating (Ag-Ca2ZnSi2O7), namely Ag-HT. In this work, we evaluated the influence of the surface roughness of Ag-HT coatings for Escherichia coli adhesion behavior, considering that surface topography is an important factor that regulates bacterial responses to biomaterials. Surface characteristics of as-sprayed and satin-finished Ag-HT coatings were investigated by scanning electron microscopy and measured using a surface roughness tester. Bacterial adhesion experiments showed that the number of viable E. coli cells on the as-sprayed or satin-finished coating surfaces was substantially lower than on the Ti-6Al-4V control surface, which can be explained by the antimicrobial effect of Ag and/or Zn. Moreover, the density of E. coli on the as-sprayed Ag-HT coating was considerably lower than on the satin-finished derivative. We attribute this difference to the fact that the as-sprayed coating surface was relatively smooth at a scale comparable to the size of an individual bacterium, while the satin-finished surface was slightly rough at this length scale and thus favored bacterial adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Fini, G. Giavaresi, L. Rimondini, and R. Giardino, Titanium Alloy Osseointegration in Cancellous and Cortical Bone of Ovariectomized Animals: Histomorphometric and Bone Hardness Measurements, Int. J. Oral Maxillofac. Implants, 2002, 17(1), p 28-37

    Google Scholar 

  2. A. Besinis, S.D. Hadi, H.R. Le, C. Tredwin, and R.D. Handy, Antibacterial Activity and Biofilm Inhibition by Surface Modified Titanium Alloy Medical Implants Following Application of Silver, Titanium Dioxide and Hydroxyapatite Nanocoatings, Nanotoxicology, 2017, 11(3), p 327-338

    Article  CAS  Google Scholar 

  3. B. Tavangar, S. Arasteh, H. Edalatkhah, A. Salimi, A. Doostmohammadi, and E. Seyedjafari, Hardystonite-Coated Poly(l-lactide) Nanofibrous Scaffold and Efficient Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells, Artif. Organs, (2017). https://doi.org/10.1111/aor.12891

    Article  Google Scholar 

  4. K. Li, Y.T. Xie, L.P. Huang, H. Ji, and X.B. Zheng, Antibacterial Mechanism of Plasma Sprayed Ca2ZnSi2O7 Coating Against Escherichia coli, J. Mater. Sci. Mater. Med., 2013, 24(1), p 171-178 (in English)

    Article  CAS  Google Scholar 

  5. K. Li, Y.T. Xie, H.Y. Ao, L.P. Huang, H. Ji, and X.B. Zheng, The Enhanced Bactericidal Effect of Plasma Sprayed Zinc-Modified Calcium Silicate Coating by the Addition of Silver, Ceram. Int., 2013, 39(7), p 7895-7902 (in English)

    Article  CAS  Google Scholar 

  6. D.X. Wei, J.W. Dao, and G.Q. Chen, A Micro-Ark for Cells: Highly Open Porous Polyhydroxyalkanoate Microspheres as Injectable Scaffolds for Tissue Regeneration, Adv. Mater., 2018, 30(31), p e1802273

    Article  Google Scholar 

  7. D.X. Wei, J.W. Dao, H.W. Liu, and G.Q. Chen, Suspended Polyhydroxyalkanoate Microspheres as 3D Carriers for Mammalian Cell Growth, Artif. Cells Nanomed. Biotechnol., 2018, 2018(1), p 1-11

    Article  Google Scholar 

  8. D. Wei, R. Qiao, J. Dao, J. Su, C. Jiang, X. Wang, M. Gao, and J. Zhong, Soybean Lecithin-Mediated Nanoporous PLGA Microspheres with Highly Entrapped and Controlled Released BMP-2 as a Stem Cell Platform, Small, 2018, 14(22), p e1800063

    Article  Google Scholar 

  9. M.M. Stevens, Exploring and Engineering the Cell-Surface Interface, Biophys. J., 2011, 100(3), p 189 (in English)

    Article  Google Scholar 

  10. M. Jager, C. Zilkens, K. Zanger, and R. Krauspe, Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants, J. Biomed. Biotechnol., 2007, 2007(8), p 69036 (in English)

    CAS  Google Scholar 

  11. R.D. Boyd, J. Verran, M.V. Jones, and M. Bhakoo, Use of the Atomic Force Microscope to Determine the Effect of Substratum Surface Topography on Bacterial Adhesion, Langmuir, 2002, 18(6), p 2343-2346 (in English)

    Article  CAS  Google Scholar 

  12. N. Harrasser, S. Jussen, I.J. Banke, R. Kmeth, R. von Eisenhart-Rothe, B. Stritzker, H. Gollwitzer, and R. Burgkart, Antibacterial Efficacy of Titanium-Containing Alloy with Silver-Nanoparticles Enriched Diamond-Like Carbon Coatings, AMB Express, 2015, 5(1), p 77

    Article  Google Scholar 

  13. S.E. Woodling and C.I. Moraru, Influence of Surface Topography on the Effectiveness of Pulsed Light Treatment for the Inactivation of Listeria innocua on Stainless-Steel Surfaces, J. Food Sci., 2005, 70(7), p M345-M351 (in English)

    Article  CAS  Google Scholar 

  14. K.A. Whitehead, J. Colligon, and J. Verran, Retention of Microbial Cells in Substratum Surface Features of Micrometer and Sub-micrometer Dimensions, Colloids Surf. B Biointerfaces, 2005, 41(2-3), p 129-138

    Article  CAS  Google Scholar 

  15. J. Yu, L. Xu, N. Xie, K. Li, Y. Xi, X. Liu, X. Zheng, X. Chen, X. Ye, and D. Wei, Optimal Zn-Modified Ca–Si-Based Ceramic Nanocoating with Zn Ion Release for Osteoblast Promotion and Osteoclast Inhibition in Bone Tissue Engineering, J. Nanomater., 2017. https://doi.org/10.1155/2017/7374510

    Article  Google Scholar 

  16. X.H. Zhou, D.X. Wei, H.M. Ye, X.C. Zhang, X.Y. Meng, and Q. Zhou, Development of Poly(vinyl alcohol) Porous Scaffold with High Strength and Well Ciprofloxacin Release Efficiency, Mater. Sci. Eng., C, 2016, 67, p 326-335 (in English)

    Article  CAS  Google Scholar 

  17. K. Kalwar and D. Shan, Antimicrobial Effect of Silver Nanoparticles (AgNPs) and Their Mechanism: A Mini Review, Micro Nano Lett., 2018, 13(3), p 277-280 (in English)

    Article  Google Scholar 

  18. Y. Li, J. Zhao, E. Shang, X. Xia, J. Niu, and J. Crittenden, Effects of Chloride Ions on Dissolution, ROS Generation, and Toxicity of Silver Nanoparticles under UV Irradiation, Environ. Sci. Technol., 2018, 52(8), p 4842-4849

    Article  CAS  Google Scholar 

  19. O. Choi, K.K. Deng, N.J. Kim, L. Ross, Jr., R.Y. Surampalli, and Z. Hu, The Inhibitory Effects of Silver Nanoparticles, Silver Ions, and Silver Chloride Colloids on Microbial Growth, Water Res., 2008, 42(12), p 3066-3074

    Article  CAS  Google Scholar 

  20. C. Wu, M. Chen, T. Zheng, and X. Yang, Effect of Surface Roughness on the Initial Response of MC3T3-E1 Cells Cultured on Polished Titanium Alloy, Bio-Med. Mater. Eng., 2015, 26(Suppl 1), p S155-S164

    Article  Google Scholar 

  21. M. Nikkhah, F. Edalat, S. Manoucheri, and A. Khademhosseini, Engineering Microscale Topographies to Control the Cell-Substrate Interface, Biomaterials, 2012, 33(21), p 5230-5246

    Article  CAS  Google Scholar 

  22. K.A. Whitehead, D. Rogers, J. Colligon, C. Wright, and J. Verran, Use of the Atomic Force Microscope to Determine the Effect of Substratum Surface Topography on the Ease of Bacterial Removal, Colloids Surf. B Biointerfaces, 2006, 51(1), p 44-53

    Article  CAS  Google Scholar 

  23. Y. Wu, J.P. Zitelli, K.S. TenHuisen, X. Yu, and M.R. Libera, Differential Response of Staphylococci and Osteoblasts to Varying Titanium Surface Roughness, Biomaterials, 2011, 32(4), p 951-960

    Article  Google Scholar 

  24. L.G. Harris and R.G. Richards, Staphylococcus aureus Adhesion to Different Treated Titanium Surfaces, J. Mater. Sci. Mater. Med., 2004, 15(4), p 311-314

    Article  CAS  Google Scholar 

  25. L.C. Hsu, J. Fang, D.A. Borca-Tasciuc, R.W. Worobo, and C.I. Moraru, Effect of Micro- and Nanoscale Topography on the Adhesion of Bacterial Cells to Solid Surfaces, Appl. Environ. Microbiol., 2013, 79(8), p 2703-2712 (in English)

    Article  CAS  Google Scholar 

  26. X. Liu, D. Wei, J. Zhong, M. Ma, J. Zhou, X. Peng, Y. Ye, G. Sun, and D. He, Electrospun Nanofibrous P(DLLA-CL) Balloons as Calcium Phosphate Cement Filled Containers for Bone Repair: In Vitro and In Vivo Studies, ACS Appl. Mater. Interfaces., 2015, 7(33), p 18540-18552

    Article  CAS  Google Scholar 

  27. G. Sun, D. Wei, X. Liu, Y. Chen, M. Li, D. He, and J. Zhong, Novel Biodegradable Electrospun Nanofibrous P(DLLA-CL) Balloons for the Treatment of Vertebral Compression Fractures, Nanomed. Nanotechnol. Biol. Med., 2013, 9(6), p 829-838

    Article  CAS  Google Scholar 

  28. P. Pei, D. Wei, M. Zhu, X. Du, and Y. Zhu, The Effect of Calcium Sulfate Incorporation on Physiochemical and Biological Properties of 3D-printed Mesoporous Calcium Silicate Cement Scaffolds, Microporous Mesoporous Mater., 2017, 241, p 11-20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51172264, 81300917), the Foundation of the Shanghai Biomaterial and Clinical Research Centre (Grant No. BMCRC2010004) and Municipal Commission of Health and Family Planning Foundation of Shanghai (20174Y0211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dai-xu Wei, Kai Li or Xiaojian Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Xu, N., Xi, Y. et al. Adhesion Behavior of Escherichia coli on Plasma-Sprayed Zn and Ag Co-incorporated Calcium Silicate Coatings with Varying Surface Roughness. J Therm Spray Tech 27, 1428–1435 (2018). https://doi.org/10.1007/s11666-018-0800-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0800-5

Keywords

Navigation