Skip to main content
Log in

Three-Dimensional Modeling of Suspension Plasma Spraying with Arc Voltage Fluctuations

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional DC plasma torch is modeled using Joule effect method to simulate the plasma jet and its voltage fluctuations. The plasma gas is a mixture of argon/hydrogen, and the arc voltage fluctuation is used as an input data in the model. Reynolds stress model is used for time-dependent simulation of the oscillating flow of the plasma gas interacting with the ambient air. The results are used to investigate the plasma oscillation effects on the trajectory, temperature, and velocity of suspension droplets. Suspensions are formed of ethanol and yttria-stabilized zirconia submicron particles and modeled as multicomponent droplets. To track the droplets/particles, a two-way coupled Eulerian–Lagrangian method is employed. In addition, in order to simulate the droplet breakup, Kelvin–Helmholtz/Rayleigh–Taylor (KH–RT) breakup model is used. After the completion of suspension breakup and evaporation, the sprayed particles are tracked to obtain the in-flight particle conditions including trajectory, size, velocity, and temperature. The arc voltage fluctuations were found to cause more than two times wider particle trajectories resulting in wider particle temperature, velocity, and size distributions compared with the case of constant voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. P. Fauchais, J. Heberlein, and M.I. Boulos, Thermal Spray Fundamentals, Springer, New York, 2014

    Book  Google Scholar 

  2. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J. Oberste Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, B. Jodoin, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25, p 1376-1440

    Article  CAS  Google Scholar 

  3. A. Vardelle, C. Moreau, N.J. Themelis, and C. Chazelas, A Perspective on Plasma Spray Technology, Plasma Chem. Plasma Process., 2015, 35, p 491-509

    Article  CAS  Google Scholar 

  4. J. Fazilleau, C. Delbos, V. Rat, J.F. Coudert, P. Fauchais, and B. Pateyron, Phenomena Involved in Suspension Plasma Spraying Part 1: Suspension Injection and Behavior, Plasma Chem. Plasma Process., 2006, 26(4), p 371-391

    Article  CAS  Google Scholar 

  5. J. Berghaus, B. Marple, and C. Moreau, Suspension Plasma Spraying of Nanostructured WC-12Co Coatings, J. Therm. Spray Technol., 2006, 15(4), p 676-681

    Article  CAS  Google Scholar 

  6. P. Fauchais, R. Etchart-Salas, C. Delbos, M. Tognonvi, V. Rat, J.F. Coudert, and T. Chartier, Suspension and Solution Plasma Spraying of Finely Structured Layers: Potential Application to SOFCs, J. Phys. D Appl. Phys., 2007, 40(8), p 2394-2406

    Article  CAS  Google Scholar 

  7. H. Samadi, A Thick Multilayer Thermal Barrier Coating: Design, Deposition, and Internal Stresses, Ph.D. Thesis, Department of Materials Science and Engineering, University of Toronto, Canada, 2009

  8. J.F. Bisson, B. Gauthier, and C. Moreau, Effect of Plasma Fluctuations on In-Flight Particle Parameters, J. Therm. Spray Technol., 2003, 12, p 38-43

    Article  CAS  Google Scholar 

  9. J.F. Bisson and C. Moreau, Effect of Direct-Current Plasma Fluctuations on In-Flight Particle Parameters: Part II, J. Therm. Spray Technol., 2003, 12, p 258-264

    Article  CAS  Google Scholar 

  10. F. Jabbari, M. Jadidi, R. Wuthrich, and A. Dolatabadi, A Numerical Study of Suspension Injection in Plasma-Spraying Process, J. Therm. Spray Technol., 2014, 23, p 3-13

    Article  Google Scholar 

  11. M. Jadidi, M. Mousavi, S. Moghtadernejad, and A. Dolatabadi, A Three-Dimensional Analysis of the Suspension Plasma Spray Impinging on a Flat Substrate, J. Therm. Spray Technol., 2015, 24, p 11-23

    CAS  Google Scholar 

  12. Y.P. Wan, V. Gupta, Q. Deng, S. Sampath, V. Prasad, R. Williamson, and J.R. Fincke, Modeling and Visualization of Plasma Spraying of Functionally Graded Materials and Its Application to the Optimization of Spray Conditions, J. Therm. Spray Technol., 2000, 10, p 382-389

    Article  Google Scholar 

  13. D. Khelfi, A. Abdellah El-hadj, and N. Ait-Messaoudène, Modeling of a 3D Plasma Thermal Spraying and the Effect of the Particle Injection Angle, Revue des Energies Renouvelables CISM’08 Oum El Bouaghi, 2008, p 205-216

  14. A. Boussagol, G. Mariaux, E. Legros, A. Vardelle, and P. Nylen, 3-D Modeling of a D.C. Plasma Jet Using Different Commercial CFD Codes, in Proceedings of 14th International Symposium On Plasma Chemistry, Orleans, France, 2000

  15. R.L. Williamson, J.R. Fincke, and C.H. Chang, A Computational Examination of the Sources of Statistical Variance in Particle Parameters During Thermal Plasma Spraying, Plasma Chem. Plasma Process., 2000, 20, p 299-324

    Article  CAS  Google Scholar 

  16. K. Cheng, X. Chen, and W. Pan, Comparison of Laminar and Turbulent Thermal Plasma Jet Characteristics—A Modeling Study, Plasma Chem. Plasma Process., 2006, 26, p 211-235

    Article  CAS  Google Scholar 

  17. J.R. Fincke, D.M. Crawford, S.C. Snyder, W.D. Swank, D.C. Haggard, and R.L. Williamson, Entrainment in High-Velocity, High-Temperature Plasma Jets. Part I: Experimental results, Int. J. Heat Mass Transf., 2003, 46, p 4201-4213

    Article  CAS  Google Scholar 

  18. K. Pourang, C. Moreau, and A. Dolatabadi, Effect of Substrate and Its Shape on in-Flight Particle Characteristics in Suspension Plasma Spraying, J. Therm. Spray Technol., 2016, 25, p 44-54

    Article  CAS  Google Scholar 

  19. P. Eichert, M. Imbert, and C. Coddet, Numerical Study of an ArH2 Gas Mixture Flowing Inside and Outside a de Plasma Torch, J. Therm. Spray Technol., 1998, 7, p 505-512

    Article  Google Scholar 

  20. R. Huang, H. Fukanuma, Y. Uesugi, and Y. Tanaka, Simulation of Arc Root Fluctuation in a DC Non-transferred Plasma Torch with Three Dimensional Modeling, J. Therm. Spray Technol., 2012, 21, p 636-643

    Article  Google Scholar 

  21. E. Safaei Ardakani and J. Mostaghimi, Arc Fluctuation Modeling in Non Transferred Direct Current Argon Plasma Torch, in 22nd International Symposium on Plasma Chemistry, Antwerp, Belgium, 2015

  22. J.P. Trelles, E. Pfender, and J. Heberlein, Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch, Plasma Chem. Plasma Process., 2006, 26(6), p 557-575

    Article  CAS  Google Scholar 

  23. E. Moreau, C. Chazelas, G. Mariaux, and A. Vardelle, Modeling the Restrike Mode Operation of a DC Plasma Spray Torch, J. Therm. Spray Technol., 2006, 15, p 524-530

    Article  Google Scholar 

  24. C. Chazelas, J.P. Trelles, I. Choquet, and A. Vardelle, Main Issues for a Fully Predictive Plasma Spray Torch Model and Numerical Considerations, Plasma Chem. Plasma Process., 2017, 37, p 627-651

    Article  CAS  Google Scholar 

  25. E. Meillot, D. Guenadou, and C. Bourgeois, Three-Dimension and Transient D.C. Plasma Flow Modeling, Plasma Chem. Plasma Process., 2008, 28, p 69-84

    Article  CAS  Google Scholar 

  26. E. Meillot, S. Vincent, C. Le Bot, F. Sarret, J.P. Caltagirone, and L. Bianchi, Numerical Simulation of Unsteady ArH2 Plasma Spray Impact on a Moving Substrate, Surf. Coat. Technol., 2015, 268(88), p 257-265

    Article  CAS  Google Scholar 

  27. C. Marchand, A. Vardelle, G. Mariaux, and P. Lefort, Modelling of the Plasma Spray Process with Liquid Feedstock Injection, Surf. Coat. Technol., 2008, 202, p 4458-4464

    Article  CAS  Google Scholar 

  28. M.I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasma: Fundamentals and Application, Vol 1, Plenum Press, New York, 1994

    Book  Google Scholar 

  29. C. Kang, H. Ng, and S. Yu, Comparative Study of Plasma Spray Flow Fields and Particle Behavior Near to Flat Inclined Substrates, Plasma Chem. Plasma Process., 2006, 26, p 149-175

    Article  CAS  Google Scholar 

  30. ANSYS Inc., ANSYS FLUENT Theory Guide, USA, 2011

  31. M. P. Planche, Experimental Study of Fluctuating Plasma Jets, Ph.D. Thesis, University of Limoges, France, 1995

  32. O. Betoule, Relationships Between the Distributions of Particle Velocity and Temperature and Coating Properties, Ph.D. Thesis, University of Limoges, France, 1994

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Natural Sciences and Engineering Research Council (NSERC) of Canada. This research was undertaken, in part, thanks to funding from the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dolatabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalir, E., Moreau, C. & Dolatabadi, A. Three-Dimensional Modeling of Suspension Plasma Spraying with Arc Voltage Fluctuations. J Therm Spray Tech 27, 1465–1490 (2018). https://doi.org/10.1007/s11666-018-0783-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0783-2

Keywords

Navigation