Skip to main content

Advertisement

Log in

Thermal Oxidation of Cold Sprayed Titanium-Based Coating Deposited on Co-Cr Alloy

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This study focuses on the surface modification of a medical grade Co-Cr alloy via combining cold spray and thermal oxidation processes. After deposition of a Ti96-Al4 (wt.%) coating, samples were oxidized at 600 °C for 60 h in air. Oxidation transformed the coating into a dual-layered structure comprising an outer oxide layer (mainly rutile) with a diffusion layer (mainly oxygen enriched titanium and Ti-Al intermetallics) beneath it. Formation of new phases made the diffusion layer brittle and prone to fracture during pull out tests. Scratch and Rockwell-C tests confirmed good adhesion between the oxide and underlying diffusion layers, having average hardness as 1297 HV and 387 HV, respectively. The dual-layer coating exhibited excellent wear performance in a 0.9 wt.% NaCl solution against sliding action of alumina ball as compared to Co-Cr substrate, especially at contact pressures < 1200 MPa, while the maximum in vivo contact pressure is < 15 MPa for load-bearing orthopedic implants. Furthermore, the release of the aluminum from the dual-layer coating into 0.9 wt.% NaCl solution is lower than the permissible limit stated by the International Agency for Research on Cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J.A. Disegi, R.L. Kennedy, and R. Pillar, Ed., Cobalt-Base Alloys for Biomedical Applications, ASTM, Danvers, 1999

    Google Scholar 

  2. B.C. Carr and T. Goswami, Knee Implants—Review of Models and Biomechanics, Mater. Des., 2009, 30(2), p 398-413

    Article  CAS  Google Scholar 

  3. M. Niinomi, Recent Metallic Materials for Biomedical Applications, Metall. Mater. Trans. A, 2002, 33(3), p 477

    Article  Google Scholar 

  4. P. Reclaru, Y. Eschler, R. Lerf, and A. Blatter, Electrochemical Corrosion and Metal Ion Release From Co-Cr-Mo Prosthesis with Titanium Plasma Spray Coating, Biomaterials, 2005, 26(23), p 4747-4756

    Article  CAS  Google Scholar 

  5. R.W.W. Hsu, C.C. Yang, C.A. Huang, and Y.S. Chen, Electrochemical Corrosion Studies on Co-Cr-Mo Implant Alloy in Biological Solutions, Mater. Chem. Phys., 2005, 93(2-3), p 531-538

    Article  CAS  Google Scholar 

  6. N.J. Hallab and J.J. Jacobs, Biologic Effects of Implant Debris, Bull. NYU Hosp. Joint Dis., 2009, 67, p 182-188

    Google Scholar 

  7. O. Öztürk, U. Türkan, and A.E. Eroǧlu, Metal Ion Release from Nitrogen Ion Implanted CoCrMo Orthopedic Implant Material, Surf. Coat. Technol., 2006, 200(20-21), p 5687-5697

    Article  Google Scholar 

  8. J.J. Jacobs, J.L. Gilbert, and R.M. Urban, Current Concepts Review. Corrosion of Metal Orthopaedic Implants, J. Bone Jt. Surg., 1998, 80(2), p 268-282

    Article  CAS  Google Scholar 

  9. M.R. Shirdar, M.M. Taheri, H. Moradifard, A. Keyvanfar, A. Shafaghat, T. Shokuhfar, and S. Izman, Hydroxyapatite-Titania Nanotube Composite as a Coating Layer on Co-Cr-Based Implants: Mechanical and Electrochemical Optimization, Ceram. Int., 2016, 42(6), p 6942-6954

    Article  Google Scholar 

  10. Y. Yan, A. Neville, and D. Dowson, Understanding the Role of Corrosion in the Degradation of Metal-on-Metal Implants, Proc. Inst. Mech. Eng. Med., 2006, 220(2), p 173-180

    Article  CAS  Google Scholar 

  11. M.T. Mathew, P. Srinivasa Pai, R. Pourzal, A. Fischer, and M.A. Wimmer, Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status, Adv. Tribol., 2009, https://doi.org/10.1155/2009/250986

    Article  Google Scholar 

  12. Y. Yan, A. Neville, and D. Dowson, Biotribocorrosion—An Appraisal of the Time Dependence of Wear and Corrosion Interactions: I. The Role of Corrosion, J. Phys. D. Appl. Phys., 2006, 39(15), p 3200-3205

    Article  CAS  Google Scholar 

  13. E. Ingham and J. Fisher, Biological Reaction to Wear Debris in Total Joint Replacement, Proc. Inst. Mech. Eng. H, 2000, 73(2), p 21-37

    Article  Google Scholar 

  14. M.A. Germain, A. Hatton, S. Williams, J.B. Matthews, M.H. Stone, J. Fisher, and E. Ingham, Comparison of the Cytotoxicity of Clinically Relevant Cobalt–Chromium and Alumina Ceramic Wear Particles in Vitro, Biomaterials, 2003, 24, p 469-479

    Article  CAS  Google Scholar 

  15. U. Türkan, O. Öztürk, and A.E. Eroǧlu, Metal Ion Release from TiN coated CoCrMo Orthopedic Implant Material, Surf. Coat. Technol., 2006, 200(16-17), p 5020-5027

    Article  Google Scholar 

  16. M. Niinomi, T. Narushima, and M. Nakai, Ed., Advances in Metallic Biomaterials, Springer, Berlin, 2015

    Google Scholar 

  17. S. Fujino, H. Tokunaga, E. Saiz, and A.P. Tomsia, Fabrication and Characterization of Bioactive Glass Coatings on Co-Cr Implant Alloys, Mater. Trans., 2004, 45(4), p 1147-1151

    Article  CAS  Google Scholar 

  18. V.H. Pham, S.H. Lee, Y. Li, H.E. Kim, K.H. Shin, and Y.H. Koh, Utility of Tantalum (T a) Coating to Improve Surface Hardness in Vitro Bioactivity and Biocompatibility of Co-Cr, Thin Solid Films, 2013, 536, p 269-274

    Article  CAS  Google Scholar 

  19. D. Cetiner, A.H. Paksoy, O. Tazegul, M. Baydogan, H. Guleryuz, H. Cimenoglu, and E. Atar, A Novel Fabrication Method for a TiO2 Layer Over CoCr Alloy, Surf. Eng., 2018, https://doi.org/10.1080/02670844.2018

    Article  Google Scholar 

  20. V. Sansone, D. Pagani, and M. Melato, The Effects on Bone Cells of Metal Ions Released from Orthopaedic Implants. A Review, Clin. Cases Miner. Bone Metab., 2013, 10(1), p 34-40

    Google Scholar 

  21. G. Manivasagam, D. Dhinasekaran, and A. Rajamanickam, Biomedical Implants: Corrosion and Its Prevention—a Review, Recent Patents Corros. Sci., 2010, 2(1), p 40-54

    Article  CAS  Google Scholar 

  22. H. Güleryüz and H. Çimenoǧlu, Effect of Thermal Oxidation on Corrosion and Corrosion-Wear Behaviour of a Ti-6Al-4V Alloy, Biomaterials, 2004, 25(16), p 3325-3333

    Article  Google Scholar 

  23. Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, C 633-13, ASTM International 2013

  24. D. Teker Aydogan, F. Muhaffel, O. Karabiyik Acar, E.N. Topcuoglu, H. Guven Kulekci, G. Torun Kose, M. Baydogan, and H. Cimenoglu, Surface Modification of Ti6Al4V by Micro-Arc Oxidation in AgC2H3O2-Containing Electrolyte, Surf. Innov., 2018, 6(4-5), p 277-285

    Article  Google Scholar 

  25. M. Mansoorianfar, M. Tavoosi, R. Mozafarinia, A. Ghasemi, and A. Doostmohammadi, Preparation and Characterization of TiO2 Nanotube Arrays on Ti6Al4V Surface for Enhancement of Cell Treatment, Surf. Coat. Technol., 2017, 321, p 409-415

    Article  CAS  Google Scholar 

  26. Standard Specification for Ti6Al4V Alloy Castings for Surgical Implants (UNS R56406), F1108-97a, ASTM International 1997

  27. K. Aniołek, M. Kupka, A. Barylski, and G. Dercz, Mechanical and Tribological Properties of Oxide Layers Obtained on Titanium in the Thermal Oxidation Process, Appl. Surf. Sci., 2015, 357, p 1419-1426

    Article  Google Scholar 

  28. H. Guleryuz and H. Cimenoglu, Surface Modification of a Ti-6Al-4V Alloy by Thermal Oxidation, Surf. Coat. Technol., 2005, 192(2-3), p 164-170

    Article  CAS  Google Scholar 

  29. N. Vidakis, A. Antoniadis, and N. Bilalis, The VDI, 3198 Indentation Test Evaluation of a Reliable Qualitative Control for Layered Compounds, J. Mater. Process. Technol., 2003, 143–144(1), p 481-485

    Article  Google Scholar 

  30. W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, and E. Broszeit, Evaluation of PVD Nitride Coatings, Using Impact, Scratch and Rockwell-C Adhesion Tests, Thin Solid Films, 1995, 270, p 431-438

    Article  CAS  Google Scholar 

  31. T. Novoselova, P. Fox, R. Morgan, and W. O’Neill, Experimental Study of Titanium/Aluminium Deposits Produced by Cold Gas Dynamic Spray, Surf. Coat. Technol., 2006, 200(8), p 2775-2783

    Article  CAS  Google Scholar 

  32. A. Moridi, S.M. Hassani-Gangaraj, M. Guagliano, and M. Dao, Cold Spray Coating: Review of Material Systems and Future Perspectives, Surf. Eng., 2014, 30(6), p 369-395

    Article  CAS  Google Scholar 

  33. R. Ghelichi and M. Guagliano, Coating by the Cold Spray Process: A State of the Art, Frat. ed Integrità Strutt., 2009, 8, p 30-44

    Article  Google Scholar 

  34. M. Hampl and R. Schmid-Fetzer, Thermodynamic Description of the Ti–O System, Int. J. Mater. Res., 2015, 106(5), p 439-453

    Article  CAS  Google Scholar 

  35. Y. Mishin and C. Herzig, Diffusion in the Ti–Al System, Acta Mater., 2000, 48(3), p 589-623

    Article  CAS  Google Scholar 

  36. U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic Assessment and Calculation of the Ti-Al System, Metall. Trans. A, 1992, 23(8), p 2081-2090

    Article  Google Scholar 

  37. K. Nonaka, H. Fujii, and H. Nakajima, Effect of Oxygen in Titanium on Reaction Diffusion Between Ti and Al, Nippon Kinzoku Gakkaishi/J. Jpn. Inst. Met., 2000, 64(2), p 85-94

    Article  CAS  Google Scholar 

  38. M. Gobel, V.A.C. Haanappel, and M.F. Stroosnijder, On the Determination of Diffusion Coefficients of Oxygen in One-Phase Ti (Alpha-Ti) and Two-Phase Ti-4Nb (Alpha- and Beta-Ti) by Micro-Hardness Measurements, Oxid. Met., 2001, 55(1-2), p 137-151

    Article  CAS  Google Scholar 

  39. H. Guleryuz and H. Cimenoglu, Oxidation of Ti-6Al-4V Alloy, J. Alloys Compd., 2009, 472(1-2), p 241-246

    Article  CAS  Google Scholar 

  40. F. Muhaffel, H. Cimenoglu, and H. Guleryuz, Oxidized titanium, Materials for total joint arthroplasty biotribology of potential bearings, R. Sonntag and J.P. Kretzer, Ed., Imperial College Press, London, 2015, p 355-395

    Google Scholar 

  41. K.C.N. Kumar, T. Tandon, P. Silori, and A. Shaikh, Biomechanical Stress Analysis of a Human Femur Bone Using ANSYS, Mater. Today Proc., 2015, 2(4-5), p 2115-2120

    Article  Google Scholar 

Download references

Acknowledgments

This work has been carried out with the financial support provided by The Scientific and Technological Research Council of Turkey (TUBITAK) under Contract No. 214M246. The authors would like to thank Mr. A. Nazim of Gebze Technical University for carrying out SEM investigations and Mr. O. F. Deniz of Gebze Technical University for 3D surface profilometer examinations. The authors would also like to thank Mr. F. Muhaffel for conducting depth sensing ultra-micro-hardness measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Atar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cetiner, D., Paksoy, A.H., Tazegul, O. et al. Thermal Oxidation of Cold Sprayed Titanium-Based Coating Deposited on Co-Cr Alloy. J Therm Spray Tech 27, 1414–1427 (2018). https://doi.org/10.1007/s11666-018-0772-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0772-5

Keywords

Navigation