Skip to main content
Log in

Determination of Triaxial Residual Stress in Plasma-Sprayed Hydroxyapatite (HAp) Deposited on Titanium Substrate by X-ray Diffraction

  • Review
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Measurement of residual stress in plasma-sprayed coating is of key importance to optimize their microstructure and mechanical properties. In this study, the x-ray diffraction analysis was carried out using the sin2ψ method to evaluate the residual stress distribution of hydroxyapatite (HAp) coatings produced on titanium substrate by atmospheric plasma spraying (APS) and vacuum plasma spraying (VPS). The sin2ψ method measured strains at different tilt ψ and rotating φ angles around the specimen surface normal. A non-uniform and inhomogeneous stress distribution was present in the both coatings. The measured strain εψφ is plotted versus sin2ψ, showing a nonlinear (elliptical) behavior, which indicates the presence of inhomogeneous triaxial stress distributions within coating, due to the crystalline anisotropy, inhomogeneous cooling rate or solidification of the molten particles. The normal stress values within both HAp coatings produced were found to be tensile in nature, but the values of tensile stresses are significantly higher in APS coating than those values obtained for VPS coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.V. Dorozhkin and M. Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chem. Int. Ed., 2002, 41(17), p 3130-3146

    Article  CAS  Google Scholar 

  2. L.T. de Jonge, S.C. Leeuwenburgh, J.G. Wolke, and J.A. Jansen, Organic–Inorganic Surface Modifications for Titanium Implant Surfaces, Pharm. Res., 2008, 25(10), p 2357-2369

    Article  CAS  Google Scholar 

  3. H. Daugaard, B. Elmengaard, J.E. Bechtold, T. Jensen, and K. Soballe, The Effect on Bone Growth Enhancement of Implant Coatings with Hydroxyapatite and Collagen Deposited Electrochemically and by Plasma Spray, J. Biomed. Mater. Res. Part A, 2010, 92(3), p 913-921

    Google Scholar 

  4. W.S.W. Harun, R.I.M. Asri, J. Alias, F.H. Zulkifli, K. Kadirgama, S.A.C. Ghani, and J.H.M. Shariffuddin, A Comprehensive Review of Hydroxyapatite-Based Coatings Adhesion on Metallic Biomaterials, Ceram. Int., 2017, 44(2), p 1250-1268

    Article  Google Scholar 

  5. J. R. Davis, Ed., Introduction to Thermal Spray Processing, Handbook of Thermal Spray Technology, p 3–13

  6. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401

    Article  CAS  Google Scholar 

  7. Y.C. Yang and E. Chang, Influence of Residual Stress on Bonding Strength and Fracture of Plasma-Sprayed Hydroxyapatite Coatings on Ti–6Al–4V Substrate, Biomaterials, 2001, 22(13), p 1827-1836

    Article  CAS  Google Scholar 

  8. Z. Gan, H.W. Ng, and A. Devasenapathi, Deposition-Induced Residual Stresses in Plasma-Sprayed Coatings, Surf. Coat. Technol., 2004, 187(2–3), p 307-319

    Article  CAS  Google Scholar 

  9. A.G.E.A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, Acta Mater., 2000, 48(15), p 3963-3976

    Article  CAS  Google Scholar 

  10. Y. Otsuka, H. Kawaguchi, and Y. Mutoh, Cyclic Delamination Behavior of Plasma-Sprayed Hydroxyapatite Coating on Ti–6Al–4V Substrates in Simulated Body Fluid, Mater. Sci. Eng. C, 2016, 67, p 533-541

    Article  CAS  Google Scholar 

  11. P. Millet, E. Girardin, C. Braham, and A. Lodini, Stress Influence on Interface in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy, J. Biomed. Mater. Res., 2002, 60(4), p 679-684

    Article  CAS  Google Scholar 

  12. Y.C. Yang and E. Chang, Measurements of Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy, Surf. Coat. Technol., 2005, 190(1), p 122-131

    Article  CAS  Google Scholar 

  13. A. Dey and A.K. Mukhopadhyay, Evaluation of Residual Stress in Microplasma Sprayed Hydroxyapatite Coating by Nanoindentation, Ceram. Int., 2014, 40(1), p 1263-1272

    Article  CAS  Google Scholar 

  14. Y.C. Yang, E. Chang, B.H. Hwang, and S.Y. Lee, Biaxial Residual Stress States of Plasma-Sprayed Hydroxyapatite Coatings on Titanium Alloy Substrate, Biomaterials, 2000, 21(13), p 1327-1337

    Article  CAS  Google Scholar 

  15. R.B. Heimann, Tracking the Thermal Decomposition of Plasma-Sprayed Hydroxylapatite, Am. Miner., 2015, 100(11–12), p 2419-2425

    Article  Google Scholar 

  16. M.E. Fitzpatrick, A.T. Fry, P. Holdway, F.A. Kandil, J. Shackleton, and L. Suominen, Determination of Residual Stresses by X-ray Diffraction, Issue 2, Measurement Good Practice Guide No. 52, National Physical Lab, 2005, p 5–44

  17. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564-1583

    Article  CAS  Google Scholar 

  18. Y.C. Tsui, C. Doyle, and T.W. Clyne, Plasma Sprayed Hydroxyapatite Coatings on Titanium Substrates Part 1: Mechanical Properties and Residual Stress Levels, Biomaterials, 1998, 19(22), p 2015-2029

    Article  CAS  Google Scholar 

  19. A. Dey and A.K. Mukhopadhyay, Suppl 1-M5: Nanoindentation Study of Phase-pure Highly Crystalline Hydroxyapatite Coatings Deposited by Microplasma Spraying, Open Biomed. Eng. J., 2015, 9, p 65

    Article  CAS  Google Scholar 

  20. Y.C. Yang and C.Y. Yang, Mechanical and Histological Evaluation of a Plasma Sprayed Hydroxyapatite Coating on a Titanium Bond Coat, Ceram. Int., 2013, 39(6), p 6509-6516

    Article  CAS  Google Scholar 

  21. J.R. Davis, Ed., Handbook of Thermal Spray Technology, ASM International, Russell Township, 2004

    Google Scholar 

  22. S. Saber-Samandari and K.A. Gross, Nanoindentation Reveals Mechanical Properties Within Thermally Sprayed Hydroxyapatite Coatings, Surf. Coat. Technol., 2009, 203(12), p 1660-1664

    Article  CAS  Google Scholar 

  23. H. Li, K.A. Khor, and P. Cheang, Properties of Heat-Treated Calcium Phosphate Coatings Deposited by High-Velocity Oxy-Fuel (HVOF) Spray, Biomaterials, 2002, 23(10), p 2105-2112

    Article  CAS  Google Scholar 

  24. A. Dey, A.K. Mukhopadhyay, S. Gangadharan, M.K. Sinha, D. Basu, and N.R. Bandyopadhyay, Nanoindentation Study of Microplasma Sprayed Hydroxyapatite Coating, Ceram. Int., 2009, 35(6), p 2295-2304

    Article  CAS  Google Scholar 

  25. H. Rao, W.A. Thompson, J.L. Katz, and R.A. Harper, Elastic Constants of the Composite System Hydroxyapatite-Dicalcium Phosphatedihydrate, J. Dent. Res., 1976, 55, p 708

    Article  CAS  Google Scholar 

  26. H.J.A. Van Dijk, N. Hattu, and K. Prijs, Preparation, Microstructure and Mechanical Properties of Dense Polycrystalline Hydroxy Apatite, J. Mater. Sci., 1981, 16(6), p 1592-1598

    Article  Google Scholar 

  27. A. Dey and A.K. Mukhopadhyay, Nanoindentation of Brittle Solids, CRC Press, Cambridge, 2014, p 350-353

    Book  Google Scholar 

  28. P.S. Prevéy, The Use of Pearson VII, Distribution Functions in X-Ray Diffraction Residual Stress Measurement, Adv. X-Ray Anal., 1986, 29, p 103-111

    Google Scholar 

  29. V. Sergo, O. Sbaizero, and D.R. Clarke, Mechanical and Chemical Consequences of the Residual Stresses in Plasma Sprayed Hydroxyapatite Coatings, Biomaterials, 1997, 18(6), p 477-482

    Article  CAS  Google Scholar 

  30. H. Singh, B.S. Sidhu, D. Puri, and S. Prakash, Use of Plasma Spray Technology for Deposition of High Temperature Oxidation/Corrosion Resistant Coatings–A Review, Mater. Corros., 2007, 58(2), p 92-102

    Article  CAS  Google Scholar 

  31. H.W.W. Wong, Heat Transfer Analysis of the Plasma Spray Deposition Process, Ph.D. Thesis, University of British Columbia, 1997

  32. B.R. Gligorijević, M. Vilotijević, M. Šćepanović, N.S. Vuković, and N.A. Radović, Substrate Preheating and Structural Properties of Power Plasma Sprayed Hydroxyapatite Coatings, Ceram. Int., 2016, 42(1), p 411-420

    Article  Google Scholar 

Download references

Acknowledgments

The presented investigations were undertaken with support of the “Ministerium für Wissenschaft Forschung und Kunst” in Baden-Württemberg which has financed this project as Kooperatives Promotionskolleg Generierung Mechanismen von Mikrostrukturen (GenMik). The authors would like to gratefully acknowledge DLR (Institute of Technical Thermodynamics, Aerospace Center, Stuttgart, Germany) for the supply of coated samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosh, N., Mozaffari-Jovein, H. & Müller, C. Determination of Triaxial Residual Stress in Plasma-Sprayed Hydroxyapatite (HAp) Deposited on Titanium Substrate by X-ray Diffraction. J Therm Spray Tech 27, 1238–1250 (2018). https://doi.org/10.1007/s11666-018-0753-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0753-8

Keywords

Navigation