Journal of Thermal Spray Technology

, Volume 27, Issue 4, pp 543–555 | Cite as

Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

  • Maurice Gell
  • Jiwen Wang
  • Rishi Kumar
  • Jeffery Roth
  • Chen Jiang
  • Eric H. Jordan
Peer Reviewed


Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.


CMAS resistance erosion resistance plasma spray thermal barrier coatings thermal cycling yttrium aluminum garnet 



This research is supported by the US Department of Energy, National Energy Technology Lab through the Small Business Technology Transfer (STTR) program award DE-SC0007544, program manager Dr. Patcharin Burke. The authors also would like to thank Prof. Douglas Wolfe at Penn State University for the erosion testing and discussion, and Dr. Balakrishnan Nair from HiFunda LLC for helpful discussion and suggestions.


  1. 1.
    R.A. Miller, Current Status of Thermal Barrier Coatings—An Overview, Surf. Coat. Technol., 1987, 30(1), p 1-11 (in English)CrossRefGoogle Scholar
  2. 2.
    A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling The Durability of Thermal Barrier Coatings, Prog. Mater Sci., 2001, 46(5), p 505-553 (in English)CrossRefGoogle Scholar
  3. 3.
    N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296(5566), p 280-284 (in English)CrossRefGoogle Scholar
  4. 4.
    R. Vassen, A. Stuke, and D. Stöver, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186 (in English)CrossRefGoogle Scholar
  5. 5.
    C.G. Levi, Emerging Materials and Processes for Thermal Barrier Systems, Curr. Opin. Solid State Mater. Sci., 2004, 8(1), p 77-91 (in English)CrossRefGoogle Scholar
  6. 6.
    X.Q. Cao, R. Vassen, and D. Stover, Ceramic Material for Thermal Barrier Coatings, J. Eur. Ceram. Soc., 2004, 24(1), p 1-10 (in English)CrossRefGoogle Scholar
  7. 7.
    D. Stover, G. Pracht, H. Lehmann, M. Dietrich, J.-E. Doring, and R. Vassen, New Material Concepts for The Next Generation of Plasma Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(1), p 76-83 (in English)CrossRefGoogle Scholar
  8. 8.
    D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal Barrier Coatings for More Efficient Gas-turbine Engines, MRS Bull., 2012, 37(10), p 891-898 (in English)CrossRefGoogle Scholar
  9. 9.
    S. Ghosh, Thermal Barrier Ceramic Coatings — A Review, Advanced Ceramic Processing, A. M. A. Mohamed, Ed., InTech, 2015, Chapter 5,
  10. 10.
    D.R. Clarke and S.R. Phillpot, Thermal Barrier Coating Materials, Mater. Today, 2005, 8(6), p 22-29 (in English)CrossRefGoogle Scholar
  11. 11.
    R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Therm. Spray Technol., 1997, 6(1), p 35-42 (in English)CrossRefGoogle Scholar
  12. 12.
    R.L. Jones, R.F. Reidy, and D. Mess, Scandia, Yttria Stabilized Zirconia for Thermal Barrier Coatings, Surf. Coat. Technol., 1996, 82(1-2), p 70-76 (in English)CrossRefGoogle Scholar
  13. 13.
    D.-J. Kim, Effect of Ta2O5, Nb2O5, and HfO2 Alloying on The Transformability of Y2O3-Stabilized Tetragonal ZrO2, J. Am. Ceram. Soc., 1990, 73(1), p 115-120 (in English)CrossRefGoogle Scholar
  14. 14.
    D. Zhu and R.A. Miller, Sintering and Creep Behavior of Plasma-Sprayed Zirconia and Hafnia-Based Thermal Barrier Coatings, Surf. Coat. Technol., 1998, 108-109, p 114-120 (in English)CrossRefGoogle Scholar
  15. 15.
    F.M. Pitek and C.G. Levi, Opportunities for TBCs in The ZrO2-YO1.5-TaO2.5 System, Surf. Coat. Technol., 2007, 201(12), p 6044-6050 (in English)CrossRefGoogle Scholar
  16. 16.
    O. Fabrichnaya, S. Lakiza, C. Wang, M. Zinkevich, C.G. Levi, and F. Aldinger, Thermodynamic Database for The ZrO2-YO3/2-GdO3/2-AlO3/2 System and Application to Thermal Barrier Coatings, J. Phase Equilib. Diffus., 2006, 27(4), p 343-352 (in English)Google Scholar
  17. 17.
    R. Vassen, X.Q. Cao, F. Tietz, D. Basu, and D. Stoever, Zirconates as New Materials for Thermal Barrier Coatings, J. Am. Ceram. Soc., 2000, 83(8), p 2023-2028 (in English)CrossRefGoogle Scholar
  18. 18.
    G. Suresh, G. Seenivasan, M.V. Krishnaiah, and P.S. Murti, Investigation of the Thermal Conductivity of Selected Compounds of Lanthanum, Samarium and Europium, J. Alloys Compd., 1998, 269(1-2), p L9-L12 (in English)CrossRefGoogle Scholar
  19. 19.
    S. Kramer, J. Yang, and C.G. Levi, Infiltration-inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts, J. Am. Ceram. Soc., 2008, 91(2), p 576-583 (in English)CrossRefGoogle Scholar
  20. 20.
    S. Mahade, N. Curry, S. Björklund, N. Markocsan, and P. Nylén, R, Vaßen, Erosion Performance of Gadolinium Zirconate-Based Thermal Barrier Coatings Processed by Suspension Plasma Spray, J. Therm. Spray Technol., 2017, 26(1-2), p 108-115 (in English)CrossRefGoogle Scholar
  21. 21.
    D. Shin and A. Hamed, Erosion Resistance Characteristics of Advanced APS TBC (GZO), in 40th International Conference and Exposition on Advanced Ceramics and Composites, Jan 24-29, 2016 (The American Ceramic Society, Daytona Beach, FL, 2016).Google Scholar
  22. 22.
    J.S. Abell, I.R. Harris, B. Cockayne, and B. Lent, An Investigation of Phase Stability in The Y2O3-Al2O3 System, J. Mater. Sci., 1974, 9(4), p 527-537 (in English)CrossRefGoogle Scholar
  23. 23.
    N.P. Padture and P.G. Klemens, Low Thermal Conductivity in Garnets, J. Am. Ceram. Soc., 1997, 80(4), p 1018-1020 (in English)CrossRefGoogle Scholar
  24. 24.
    Y.J. Su, R.W. Trice, K.T. Faber, H. Wang, and W.D. Porter, Thermal Conductivity, Phase Stability, and Oxidation Resistance of Y3Al5O12 (YAG)/Y2O3-ZrO2 (YSZ) Thermal-Barrier Coatings, Oxide Met., 2004, 61(3), p 253-271 (in English)CrossRefGoogle Scholar
  25. 25.
    C.M. Weyant and K.T. Faber, Processing-microstructure Relationships for Plasma-sprayed Yttrium Aluminum Garnet, Surf. Coat. Technol., 2008, 202(24), p 6081-6089 (in English)CrossRefGoogle Scholar
  26. 26.
    J. P. Feist and J. R. Nicholls, Thermal Barrier Coatings and Coated Components, US Patent 2011/0236657, 2011.Google Scholar
  27. 27.
    J.R. Nicholls, K.J. Lawson, A. Johnstone, and D.S. Rickerby, Methods to Reduce The Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391 (in English)CrossRefGoogle Scholar
  28. 28.
    S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M.J. Mayo, The Effect of Grain Size, Porosity and Yttria Content on The Thermal Conductivity of Nano-crystalline Zirconia, Scripta Mater., 1998, 39(8), p 1119-1125 (in English)Google Scholar
  29. 29.
    H. Guo, T.J.M. Bayer, J. Guo, A. Baker, and C.A. Randall, Cold Sintering Process for 8 mol% Y2O3-stabilized ZrO2 Ceramics, J. Eur. Ceram. Soc., 2017, 37(5), p 2303-2308 (in English)CrossRefGoogle Scholar
  30. 30.
    D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, K. Kishan Rao, and S. Bal Laxman, Systematic Hardness Measurements on Some Rare Earth Garnet Crystals, Bull. Mater. Sci., 2001, 24(5), p 469-473 (in English)CrossRefGoogle Scholar
  31. 31.
    A. Marinis, S.A. Aquilino, P.S. Lund, D.G. Gratton, C.M. Stanford, A.M. Diaz-Arnold, and F. Qian, Fracture Toughness of Yttria-Stablized Zirconia Sintered in Conventional and Microwave Ovens, J. Prosthet. Dent., 2013, 109(3), p 165-171 (in English)CrossRefGoogle Scholar
  32. 32.
    W.R. Blumenthal and S.T. Taylor, High Temperature Fracture Toughness of Single Crystal Yttrium-Aluminum Garnet, Acta Mater., 1997, 45(7), p 3071-3078 (in English)CrossRefGoogle Scholar
  33. 33.
    E.H. Jordan, C. Jiang, and M. Gell, Solution Precursor Plasma Spray (SPPS) Process: An Review with Energy Considerations, J. Therm. Spray Technol., 2016, 27(7), p 1153-1165 (in English)Google Scholar
  34. 34.
    L. Xie, X. Ma, E.H. Jordan, N.P. Padture, T.D. Xiao, and M. Gell, Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process, Surf. Coat. Technol., 2004, 177-178, p 103-107 (in English)CrossRefGoogle Scholar
  35. 35.
    L. Pawlowski, Suspension and Solution Thermal Spray Coatings, Surf. Coat. Technol., 2009, 203(19), p 2807-2829 (in English)CrossRefGoogle Scholar
  36. 36.
    N.P. Padture, K.W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garcia, P. Miranzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49(12), p 2251-2257 (in English)CrossRefGoogle Scholar
  37. 37.
    M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2008, 17(1), p 124-135 (in English)CrossRefGoogle Scholar
  38. 38.
    E.H. Jordan, L. Xie, C. Ma, M. Gell, N. Padture, B. Cetegen, J. Roth, T.D. Xiao, and P.E.C. Bryant, Superior Thermal Barrier Coatings Using Solution Precursor Plasma Spray, J. Therm. Technol., 2004, 13(1), p 57-65 (in English)CrossRefGoogle Scholar
  39. 39.
    E.H. Jordan, C. Jiang, J. Roth, and M. Gell, Low Thermal Conductivity Yttria-Stabilized Zirconia Thermal Barrier Coatings Using the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2014, 23(5), p 849-859 (in English)CrossRefGoogle Scholar
  40. 40.
    A.D. Jadhav, N.P. Padture, F. Wu, E. Jordan, and M. Gell, Thick Ceramic Thermal Barrier Coatings with High Durability Deposited Using Solution Precursor Plasma Spray, Mater. Sci. Eng., A, 2005, 405(1-2), p 313-320 (in English)CrossRefGoogle Scholar
  41. 41.
    A.D. Jadhav, N.P. Padture, E.H. Jordan, M. Gell, P. Miranzo, and E.R. Fuller, Jr., Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54(12), p 3343-3349 (in English)CrossRefGoogle Scholar
  42. 42.
    E. H. Jordan, M. Gell, C Jiang, J. Wang, M. Gell, and B. Nair, High Temperature Thermal Barrier Coating Made by the Solution Precursor Plasma Spray Process, in ASME Turbo Expo: Power for Land, Sea, and Air, Volume 6: Ceramics; Controls, Diagnostics and Instrumentation; Education; Manufacturing Materials and Metallurgy, June 16-20, 2014 (Düsseldorf, Germany), International Gas Turbine Institute, 2014.
  43. 43.
    K.R. Han, H.J. Koo, and C.S. Lim, A Simple Way to Synthesize Yttrium Aluminum Garnet by Dissolving Yttria Powder in Alumina Sol, J. Am. Ceram. Soc., 1999, 82(6), p 1598-1600 (in English)CrossRefGoogle Scholar
  44. 44.
    D. Chen, E.H. Jordan, M.W. Renfro, and M. Gell, Dy:YAG Phosphor Coating Using the Solution Precursor Plasma Spray Process, J. Am. Ceram. Soc., 2009, 92(1), p 268-271 (in English)CrossRefGoogle Scholar
  45. 45.
    L. Gu, S. Zhao, J. Xu, Y. Hui, X. Fan, B. Zou, Y. Wang, and X.Q. Cao, Phase Stability of Plasma Sprayed YAG-YSZ Composite Beads/Coatings at High Temperature, J. Eur. Ceram. Soc., 2013, 33(15-16), p 3325-3333 (in English)CrossRefGoogle Scholar
  46. 46.
    S. Raghavan, H. Wang, R.B. Dinwiddie, W.D. Porter, and M. Mayo, The Effect of Grain Size, Porosity and Yttria Content on the Thermal Conductivity of Nanocrystalline Zirconia, Scripta Mater., 1998, 39(8), p 119-1125 (in English)CrossRefGoogle Scholar
  47. 47.
    K.W. Schlichting, N.P. Padture, and P.G. Klemens, Thermal Conductivity of Dense and Porous Yttria-stabilized Zirconia, J. Mater. Sci., 2001, 36(12), p 3003-3010 (in English)CrossRefGoogle Scholar
  48. 48.
    R.C. Progelhof, J.L. Throne, and R.R. Ruetsch, Methods for Predicting The Thermal Conductivity of Composite Systems: A Review, Polym. Eng. Sci., 1976, 16(9), p 615-625 (in English)CrossRefGoogle Scholar
  49. 49.
    P. Morrell, Handbook of Properties of Technical Ceramics and Engineering Ceramics, Part I, Her Majesty’s Stationery Office, London, 1989, p 87Google Scholar
  50. 50.
    C. Jiang, E.H. Jordan, A.B. Harris, M. Gell, and J. Roth, Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2015, 24(6), p 895-906 (in English)CrossRefGoogle Scholar
  51. 51.
    M. Karger, R. Vaßen, and D. Stöver, Atmospheric Plasma Sprayed Thermal Barrier Coatings with High Segmentation Crack Densities: Spraying Process, Microstructure and Thermal Cycling Behavior, Surf. Coat. Technol., 2011, 206(1), p 16-23 (in English)CrossRefGoogle Scholar
  52. 52.
    R. Wellman, G. Whitman, and J.R. Nicholls, CMAS Corrosion of EB-PVD TBCs: Identifying the Minimum Level to Initiate Damage, Int. J. Refract. Met. Hard Mater., 2010, 28(1), p 124-132 (in English)CrossRefGoogle Scholar
  53. 53.
    S. Krämer, J. Yang, C.G. Levi, and C.A. Johnson, Thermochemical Interaction of Thermal Barrier Coatings with Molten CaO-MgO-Al2O3-SiO2 (CMAS) Deposits, J. Am. Ceram. Soc., 2006, 89(10), p 3167-3175 (in English)CrossRefGoogle Scholar
  54. 54.
    R. Kumar, E. Jordan, M. Gell, J. Roth, C. Jiang, J. Wang, and S. Rommel, CMAS Behavior of Yttrium Aluminum Garnet (YAG) and Yttria-Stabilized Zirconia (YSZ) Thermal Barrier Coatings, Surf. Coat. Technol., 2017, 327, p 126-138 (in English)CrossRefGoogle Scholar
  55. 55.
    A.R. Krause, B.S. Senturk, H.F. Garces, G. Dwivedi, A.L. Ortiz, S. Sampath, and N.P. Padture, 2ZrO2:Y2O3 Thermal Barrier Coatings Resistant to Degradation by Molten CMAS: Part I, Optical Basicity Considerations and Processing, J. Am. Ceram. Soc., 2014, 97(12), p 3943-3949 (in English)CrossRefGoogle Scholar
  56. 56.
    L.K. Ives and A.W. Ruff, Transmission and Scanning Electron Microscopy Studies of Deformation at Erosion Impacts Sites, Wear, 1978, 46(1), p 149-162 (in English)CrossRefGoogle Scholar
  57. 57.
    F. Cernuschi, C. Guardamagna, S. Capelli, L. Lorenzoni, D.E. Mack, and A. Moscatelli, Solid Particle Erosion of Standard Advanced Thermal Barrier Coatings, Wear, 2016, 348-349, p 43-51 (in English)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Maurice Gell
    • 1
  • Jiwen Wang
    • 2
  • Rishi Kumar
    • 1
  • Jeffery Roth
    • 1
  • Chen Jiang
    • 2
  • Eric H. Jordan
    • 1
    • 3
  1. 1.Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.HiFunda LLCSalt Lake CityUSA
  3. 3.Department of Mechanical EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations