Advertisement

Journal of Materials Engineering and Performance

, Volume 26, Issue 4, pp 1569–1580 | Cite as

New Correlations Between Monotonic and Cyclic Properties of Metallic Materials

Article
  • 149 Downloads

Abstract

Knowledge of the cyclic properties of metallic materials is often critical to correctly design structural components. However, cyclic data are not easily available in the literature, while tensile test data are easier to find in specialized sites or vendor catalogs. In this study, the cyclic strength coefficient and the cyclic strain hardening exponent of the Ramberg–Osgood law were evaluated using exclusively data obtained through monotonic tensile tests. The analyses were carried out on a large set of materials. The database used is composed of 338 alloys, mainly iron alloys, but also titanium and aluminum alloys. New subdivisions of the materials were introduced. Several original relations were suggested to correlate static and cyclic strength parameters. The evaluated values of both cyclic strength coefficient and cyclic strain hardening exponent were compared with experimental values coming from cyclic test, obtaining a satisfactory agreement and a higher accuracy if compared with similar relations found in the literature.

Keywords

cyclic strain hardening exponent cyclic strength coefficient cyclic stress–train curve mechanical characterization monotonic properties theoretical estimation 

Nomenclature

E

Modulus of elasticity

K

Cyclic strength coefficient

R2

Coefficient of determination

Rm

Ultimate tensile strength

Rp

Monotonic yield stress

a, b, c

Numerical constant/coefficient

n

Monotonic strain hardening exponent

n

Cyclic strain hardening exponent

Δε

Strain range

Δσ

Stress range

α

New fracture-ductility parameter

εf

True fracture ductility

σf

True fracture strength

ψ

Reduction in area

References

  1. 1.
    R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in Engineering, 2nd ed., Wiley, New York, 2001Google Scholar
  2. 2.
    M.A. Meggiolaro, and J.T.P. Castro, A Critical Evaluation of Fatigue Crack Initiation Parameter Estimates, Fatigue 2004—2nd SAE Brazil Int. Conf. on Fatigue, on CD-ROM, June 21–23, 2004 (São Paulo, Brazil), SAE paper n. 2004-01-2219, SAE International, 2004.Google Scholar
  3. 3.
    Z. Zhang, J. Li, Q. Sun, Y. Qiao, and C. Li, Two Parameters Describing Cyclic Hardening/Softening Behaviors of Metallic Materials, J. Mater. Eng. Perform., 2009, 18(3), p 237–244. doi: 10.1007/s11665-008-9287-4 CrossRefGoogle Scholar
  4. 4.
    R. Basan, M. Franulović, and S. Smokvina-Hanza, Estimation of cyclic Stress–Strain Curves for Low-Alloy Steel from Hardness, Metalurgija, 2010, 49(2), p 83–86Google Scholar
  5. 5.
    J. Li, Q. Sun, Z. Zhang, C. Li, and Y. Qiao, Theoretical Estimation to the Cyclic Yield Strength and Fatigue Limit for Alloy Steels, Mech. Res. Commun., 2009, 36, p 316–321. doi: 10.1016/j.mechrescom.2008.10.011 CrossRefGoogle Scholar
  6. 6.
    A. Tomasella, C. El Dsoki, H. Hanselka, and H. Kaufmann, A Computational Estimation of Cyclic Material Properties Using Artificial Neural Networks, Procedia Eng., 2011, 10, p 439–445. doi: 10.1016/j.proeng.2011.04.075 CrossRefGoogle Scholar
  7. 7.
    R. Ghajar, N. Naserifar, H. Sadati, and K.J. Alizadeh, A Neural Network Approach for Predicting Steel Properties Characterizing Cyclic Ramberg–Osgood Equation, Fatigue Fract. Eng. Mater. Struct., 2011, 34(7), p 534–544. doi: 10.1111/j.1460-2695.2010.01545.x CrossRefGoogle Scholar
  8. 8.
    K. Hatanaka, T. Fujimitsu, and T. Yamada, An Analysis of Stress–Strain Hysteresis Loop and Cyclic Stress–Strain Curve in Structural Steels, Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials, K.-T. Rie, Ed., September 7–11, 1987 (Munich, FGR), Elsevier Applied Science Publishers, 1987, p 155–164. ISBN 978-94-010-8049-1, doi: 10.1007/978-94-009-3459-7_23.
  9. 9.
    T. Marohnic, R. Basan, and M. Franulović, Evaluation of the Possibility of Estimating Cyclic Stress–Strain Parameters and Curves from Monotonic Properties of Steels, Procedia Eng., 2015, 101, p 77–284. doi: 10.1016/j.proeng.2015.02.029 CrossRefGoogle Scholar
  10. 10.
    Z. Zhang, Y. Qiao, Q. Sun, C. Li, and J. Li, Theoretical Estimation to the Cyclic Strength Coefficient and the Cyclic Strain-Hardening Exponent for Metallic Materials: Preliminary Study, J. Mater. Eng. Perform., 2009, 18(3), p 245–254. doi: 10.1007/s11665-008-9286-5 CrossRefGoogle Scholar
  11. 11.
    Z. Lopez and A. Fatemi, A Method of Predicting Cyclic Stress–Strain Curve from Tensile Properties for Steels, Mater. Sci. Eng. A, 2012, 556, p 540–550. doi: 10.1016/j.msea.2012.07.024 CrossRefGoogle Scholar
  12. 12.
    Z. Lopez, Correlations among Tensile and Cyclic Deformation Properties for Steels and Implications on Fatigue Life Predictions, Thesis submitted for the Master of Science Degree in Mechanical Engineering, University of Toledo, USA, 2012Google Scholar
  13. 13.
    C. Boller and T. Seeger, Materials Data for Cyclic Loading, Elsevier, Amsterdam, 1987Google Scholar
  14. 14.
    A. Bäumel and T. Seeger, Materials Data for Cyclic Loading, Supplement 1, Elsevier, Amsterdam, 1990Google Scholar
  15. 15.
    N.E. Dowling, Mechanical Behavior of Materials, 4th ed., Prentice-Hall Int, New Jersey, 2012Google Scholar
  16. 16.
    R.W. Smith, M.H. Hirschberg, S.S. Manson, Fatigue Behavior under Strain Cycling in Low and Intermediate Life Range, Technical Note D-1574, 1963, National Aeronautics and Space Administration, Washington, USAGoogle Scholar
  17. 17.
    K.S. Kim, X. Chen, C. Han, and H.W. Lee, Estimation methods for fatigue properties of steels under axial and torsional loading, Int. J. Fatigue, 2001, 24, p 783–793. doi: 10.1016/s0142-1123(01)00190-6 CrossRefGoogle Scholar
  18. 18.
    M.L. Roessle and A. Fatemi, Strain-Controlled Fatigue Properties of Steels and Some Simple Approximations, Int. J. Fatigue, 2000, 22(6), p 495–511. doi: 10.1016/s0142-1123(00)00026-8 CrossRefGoogle Scholar
  19. 19.
    R. Basan, MATDAT Materials Properties Database, Version 1.0. http://www.matdat.com, 2011, Accessed: 18 October 2015.

Copyright information

© ASM International 2017

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations