Skip to main content
Log in

X-ray Topography Characterization of GaN Substrates Used for Power Electronic Devices

  • Topical Collection: 62nd Electronic Materials Conference 2020
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN) substrates grown by different methods were characterized by high-resolution x-ray diffraction and synchrotron x-ray topography. Using the monochromatic beam in the grazing incidence geometry, high-resolution x-ray topographs reveal the various dislocation types present. Dislocation contrasts were correlated with ray-tracing simulation results successfully so that the Burgers vectors of the dislocations could be determined. Ammonothermal-grown GaN substrate wafers show the best quality among all the wafers. These wafers, which are free of basal plane dislocations (BPDs) have threading mixed dislocations (TMDs) dominant among the threading dislocations (TDs). Images of patterned hydride vapor phase epitaxy (HVPE) GaN reveal a starkly heterogeneous distribution of dislocations with large areas containing low threading dislocation densities in between a grid of strain centers with higher threading dislocation densities and BPDs. The strain level of regular HVPE GaN substrates is very high, and the dislocation density is around 105–106 cm−2, which is much higher than 104 cm−2 of ammonothermal samples and dislocation-free areas in the patterned HVPE samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys., 1999, 86, p 1.

    Article  CAS  Google Scholar 

  2. S. Porowski, and I. Grzegory, J. Cryst. Growth, 1997, 178, p 174.

    Article  CAS  Google Scholar 

  3. H. Wu, J. Spinelli, P. Konkapaka, M. Spencer, Rapid growth of bulk GaN crystal using GaN powder as source material, MRS Online Proceedings Library Archive, 892, FF30-01 (2005).

  4. D. Siche, D. Gogova, S. Lehmann, T. Fizia, R. Fornari, M. Andrasch, A. Pipa, and J. Ehlbeck, J. Cryst. Growth, 2011, 318, p 406.

    Article  CAS  Google Scholar 

  5. M. Aoki, H. Yamane, M. Shimada, S. Sarayama, and F.J. DiSalvo, J. Cryst. Growth, 2002, 242, p 70.

    Article  CAS  Google Scholar 

  6. H.P. Maruska, and J. Tietjen, Appl. Phys. Lett., 1969, 15, p 327.

    Article  CAS  Google Scholar 

  7. T. Nakamura, K. Motoki, in IEEE Proceedings (2013), p. 2221

  8. R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, A. Puchalski, Y. Kanbara, K. Yagi, H. Minakuchi, and H. Hayashi, J. Cryst. Growth, 2008, 310, p 3911.

    Article  Google Scholar 

  9. T. Hashimoto, F. Wu, J.S. Speck, and S. Nakamura, J. Cryst. Growth, 2008, 310, p 3907.

    Article  CAS  Google Scholar 

  10. R. Dwiliński, R. Doradziński, J. Garczyński, L. Sierzputowski, R. Kucharski, M. Zając, M. Rudziński, R. Kudrawiec, J. Serafińczuk, and W. Strupiński, J. Cryst. Growth, 2010, 312, p 2499.

    Article  Google Scholar 

  11. J. Hsu, M. Manfra, D. Lang, S. Richter, S. Chu, A. Sergent, R. Kleiman, L. Pfeiffer, and R. Molnar, Appl. Phys. Lett., 2001, 78, p 1685.

    Article  CAS  Google Scholar 

  12. E. Miller, E. Yu, P. Waltereit, and J. Speck, Appl. Phys. Lett., 2004, 84, p 535.

    Article  CAS  Google Scholar 

  13. K. Horibuchi, S. Yamaguchi, Y. Kimoto, K. Nishikawa, and T. Kachi, Semicond. Sci. Technol., 2016, 31, p 034002.

    Article  Google Scholar 

  14. M. Skowronski, and S. Ha, J. Appl. Phys., 2006, 99, p 1.

    Article  Google Scholar 

  15. Y. Chen, M. Dudley, K. Liu, R. Stahlbush, Appl. Phys. Lett., 90, (2007).

  16. K. Maeda, in Materials and Reliability Handbook for Semiconductor Optical and Electron Devices, ed. by O. Ueda, S. J. Pearton (Springer, 2013), p. 263

  17. Huang, M. Dudley, W. Vetter, W. Huang, S. Wang, and C. Carter Jr., Appl. Phys. Lett., 1999, 74, p 353.

    Article  CAS  Google Scholar 

  18. Y. Chen, and M. Dudley, Appl. Phys. Lett., 2007, 91, p 141918.

    Article  Google Scholar 

  19. I. Kamata, M. Nagano, H. Tsuchida, Y. Chen, M. Dudley, in Mater. Sci. Forum Proceedings (2009), p. 305

  20. Y. Chen, X. R. Huang, N. Zhang, M. Dudley, J. D. Caldwell, K. X. Liu, R. E. Stahlbush, in Mater. Sci. Forum Proceedings (2009), p. 357

  21. M. Dudley, Y. Chen, X. R. Huang, R. H. Ma, in Mater. Sci. Forum Proceedings (2009), p. 261

  22. T. Zhou, B. Raghothamachar, F. Wu, R. Dalmau, B. Moody, S. Craft, R. Schlesser, M. Dudley, and Z. Sitar, J. Electron. Mater., 2014, 43, p 838.

    Article  CAS  Google Scholar 

  23. T. Zhou, B. Raghothamachar, F. Wu, and M. Dudley, MRS Online Proceedings Library Archive, 2013, 1494, p 121.

    Article  Google Scholar 

  24. S. Sintonen, M. Rudziński, S. Suihkonen, H. Jussila, M. Knetzger, E. Meissner, A. Danilewsky, T.O. Tuomi, and H. Lipsanen, J. Appl. Phys., 2014, 116, p 083504.

    Article  Google Scholar 

  25. X. Huang, R. Peng, M.G. Hönnicke, and T. Gog, Phys. Rev. A, 2013, 87, p 063828.

    Article  Google Scholar 

  26. X. Huang, and M. Dudley, Acta Crystallographica Section A, 2003, 59, p 163.

    Article  Google Scholar 

  27. W. Cho, X. Huang, and M. Dudley, Acta Crystallogr. A, 2004, 60, p 195.

    Article  Google Scholar 

  28. B. Raghothamachar, M. Dudley, G. Dhanaraj, in Springer handbook of crystal growth, ed. by G. Dhanaraj, K. Byrappa, V. Prasad, M. Dudley (Springer, 2010), p. 1425

  29. B. Raghothamachar, Y. Liu, H. Peng, T. Ailihumaer, M. Dudley, F. S. Shahedipour-Sandvik, K. A. Jones, A. Armstrong, A. A. Allerman, J. Han, H. Fu, K. Fu, Y. Zhao, J. Cryst. Growth, 544, (2020).

  30. Y. Liu, B. Raghothamachar, H. Peng, T. Ailihumaer, M. Dudley, R. Collazo, J. Tweedie, Z. Sitar, F.S. Shahedipour-Sandvik, and K.A. Jones, J. Cryst. Growth, 2020, 551, p 125903.

    Article  CAS  Google Scholar 

  31. Y. Zhang, M. Sun, J. Perozek, Z. Liu, A. Zubair, D. Piedra, N. Chowdhury, X. Gao, K. Shepard, T. Palacios, IEEE Electron Device Lett., 1 (2018).

Download references

Acknowledgments

X-ray topography work supported by ARPA-E through PNDIODES program (DE-AR0001115; Project Director: I. Kizilyalli). Synchrotron x-ray topographs were recorded using the resources of the Advanced Photon Source (Beamline 1-BM), a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Joint Photon Sciences Institute at Stony Brook University provided partial support for travel and subsistence at the Advanced Photon Source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Peng, H., Ailihumaer, T. et al. X-ray Topography Characterization of GaN Substrates Used for Power Electronic Devices. J. Electron. Mater. 50, 2981–2989 (2021). https://doi.org/10.1007/s11664-021-08762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-08762-6

Keywords

Navigation