Growth Parameter Based Control of Cation Disorder in MgSnN2 Thin Films

Abstract

MgSnN\(_2\) thin films have been grown on yttria-stabilized zirconia substrates via plasma-assisted molecular beam epitaxy and analyzed using reflection high-energy electron diffraction, X-ray diffraction, optical transmission, and cathodoluminescence. By systematically varying the growth parameters, particularly the substrate temperature, Mg:Sn flux ratio, substrate, and nitrogen flow rate, we were able to achieve high quality films and control disorder in the cation sublattice. This control of disorder allows for the ability to adjust the band gap continuously over a wide range of values.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    U.S. Geological Survey. MINERAL COMMODITY SUMMARIES 2019 (2019). https://doi.org/10.3133/70180197

  2. 2.

    C.H.L. Goodman, I.G. Austin, and A.E. Pengelly, J. Electrochem. Soc. 103(11), 609 (1956). https://doi.org/10.1149/1.2430171

    Article  Google Scholar 

  3. 3.

    J.I. Pankove, E.A. Miller, D. Richman, and J.E. Berkeyheiser, J. Luminesc. 4(1), 63 (1971). https://doi.org/10.1016/0022-2313(71)90009-3

    CAS  Article  Google Scholar 

  4. 4.

    A. Punya, W.R.L. Lambrecht, and M. van Schilfgaarde, Phys. Rev. B 84(16), 165204 (2011). https://doi.org/10.1103/PhysRevB.84.165204

    CAS  Article  Google Scholar 

  5. 5.

    N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, and S.M. Durbin, Appl. Phys. Lett. 103, 4 (2013). https://doi.org/10.1063/1.4816438

    CAS  Article  Google Scholar 

  6. 6.

    L. Lahourcade, N.C. Coronel, K.T. Delaney, S.K. Shukla, N.A. Spaldin, and H.A. Atwater, Adv. Mater. 25(18), 2562 (2013). https://doi.org/10.1002/adma.201204718

    CAS  Article  Google Scholar 

  7. 7.

    F. Kawamura, N. Yamada, M. Imai, and T. Taniguchi, Cryst. Res. Technol. 51(3), 220 (2016). https://doi.org/10.1002/crat.201500258

    CAS  Article  Google Scholar 

  8. 8.

    R. Qin, H. Cao, L. Liang, Y. Xie, F. Zhuge, H. Zhang, J. Gao, K. Javaid, C. Liu, and W. Sun, Appl. Phys. Lett. 108(14), 142104 (2016). https://doi.org/10.1063/1.4945728

    CAS  Article  Google Scholar 

  9. 9.

    A.N. Fioretti, A. Stokes, M.R. Young, B. Gorman, E.S. Toberer, A.C. Tamboli, and A. Zakutayev, Adv. Electron. Mater. 3(3), 1600544 (2017). https://doi.org/10.1002/aelm.201600544

    CAS  Article  Google Scholar 

  10. 10.

    P.C. Quayle, G.T. Junno, K. He, E.W. Blanton, J. Shan, and K. Kash, Phys. Status Solidi (b) 254(8), 1600718 (2017). https://doi.org/10.1002/pssb.201600718

  11. 11.

    R.A. Makin, N. Senabulya, J. Mathis, N. Feldberg, P. Miska, R. Clarke, and S.M. Durbin, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Measur. Phenom. 35(2) (2017). https://doi.org/10.1116/1.4978021

  12. 12.

    A.P. Jaroenjittichai and W.R.L. Lambrecht, Phys. Rev. B 94(12), 125201 (2016). https://doi.org/10.1103/PhysRevB.94.125201

    Article  Google Scholar 

  13. 13.

    Inorganic crystal structure database (Fachinformationszentrum and Eggenstein-Leopoldshafen, D-7514 Karlsruhe, Germany)

  14. 14.

    F. Arab, F.A. Sahraoui, K. Haddadi, A. Bouhemadou, and L. Louail, Phase Trans. 89(5), 480 (2016). https://doi.org/10.1080/01411594.2015.1089574

    CAS  Article  Google Scholar 

  15. 15.

    R.J. Bruls, H.T. Hintzen, G. de With, R. Metselaar, and J.C. van Miltenburg, J. Phys. Chem. Solids (2001). https://doi.org/10.1016/S0022-3697(00)00258-4

  16. 16.

    R.A. Makin, K. York, S.M. Durbin, N. Senabulya, J. Mathis, R. Clarke, N. Feldberg, P. Miska, C.M. Jones, Z. Deng, L. Williams, E. Kioupakis, and R.J. Reeves, Phys. Rev. Lett. 122(25), 256403 (2019). https://doi.org/10.1103/PhysRevLett.122.256403

    CAS  Article  Google Scholar 

  17. 17.

    W.L. Bragg and E.J. Williams, Proc. R. Soc. Lond. Ser. A 145A, 699 (1934). https://doi.org/10.1098/rspa.1934.0132

    Article  Google Scholar 

  18. 18.

    W.L. Bragg and E.J. Williams, Proc. R. Soc. Lond. Ser. A 151A, 540 (1935). https://doi.org/10.1098/rspa.1935.0165

    Article  Google Scholar 

  19. 19.

    A. Ichimiya and P. Cohen, Reflection High-Energy Electron Diffraction (Cambridge: Cambridge University Press, 2004)

    Google Scholar 

  20. 20.

    D. Fang, X. Cheng, Y. Li, and Z. Sun, R. Soc. Chem. 6, 96327 (2016). https://doi.org/10.1039/c6ra13910h

    CAS  Article  Google Scholar 

  21. 21.

    N. Feldberg, B. Keen, J.D. Aldous, D.O. Scanlon, P.A. Stampe, and R.J. Kennedy, 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2524–2527 (2011)

  22. 22.

    N. Senabulya, N. Feldberg, R.A. Makin, Y. Yang, G. Shi, C.M. Jones, E. Kioupakis, J. Mathis, R. Clarke, and S.M. Durbin, AIP Adv. 6, 7 (2016). https://doi.org/10.1063/1.4960109

    CAS  Article  Google Scholar 

  23. 23.

    B. Warren, X-Ray Diffraction Dover Books on Physics (Dover Publications, 2012)

  24. 24.

    R.A. Makin, K. York, S.M. Durbin, and R.J. Reeves, Phys. Rev. B 102(11), 115202 (2020). https://doi.org/10.1103/PhysRevB.102.115202

    CAS  Article  Google Scholar 

  25. 25.

    N. Feldberg, ZnSnN\(_{2}\): Growth and characterization of an earth abundant element material with order dependent properties. Ph.D. thesis, University at Buffalo, New York (2015)

  26. 26.

    C. Biloiu, E. Scime, F. Doss, and I. Biloiu, (IEEE, Baltimore, MD, USA, 2004), pp. 239–239. https://doi.org/10.1109/PLASMA.2004.1339859

  27. 27.

    M.A. Wistey, S.R. Bank, H.B. Yuen, H. Bae, and J.S. Harris, J. Cryst. Growth 278(1–4), 229 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.060

    CAS  Article  Google Scholar 

  28. 28.

    H. Carrère, A. Arnoult, A. Ricard, and E. Bedel-Pereira, J. Cryst. Growth 243(2), 295 (2002). https://doi.org/10.1016/S0022-0248(02)01527-0

    Article  Google Scholar 

  29. 29.

    H. Carrère, A. Arnoult, E. Bedel-Pereira, and A. Ricard, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 22(5), 2448 (2004). https://doi.org/10.1116/1.1788681

    CAS  Article  Google Scholar 

  30. 30.

    E. Iliopoulos, A. Adikimenakis, E. Dimakis, K. Tsagaraki, G. Konstantinidis, and A. Georgakilas, J. Cryst. Growth 278(1–4), 426 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.013

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work stems from studies of disorder in ZnSnN\(_2\) and MgSnN\(_2\), funded in part by the National Science Foundation (Grants DMR-1410915 and DMR-2003581), and by a Western Michigan University Faculty Research and Creativity Activities Award. The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF Grant DMR-1625671, and technical support from the Michigan Center for Materials Characterization.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krystal R. York.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

York, K.R., Makin, R.A., Senabulya, N. et al. Growth Parameter Based Control of Cation Disorder in MgSnN2 Thin Films. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08708-4

Download citation

Keywords

  • MgSnN\(_2\)
  • order parameter
  • growth conditions
  • molecular beam epitaxy
  • thin films