Abstract
MgSnN\(_2\) thin films have been grown on yttria-stabilized zirconia substrates via plasma-assisted molecular beam epitaxy and analyzed using reflection high-energy electron diffraction, X-ray diffraction, optical transmission, and cathodoluminescence. By systematically varying the growth parameters, particularly the substrate temperature, Mg:Sn flux ratio, substrate, and nitrogen flow rate, we were able to achieve high quality films and control disorder in the cation sublattice. This control of disorder allows for the ability to adjust the band gap continuously over a wide range of values.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.






References
- 1.
U.S. Geological Survey. MINERAL COMMODITY SUMMARIES 2019 (2019). https://doi.org/10.3133/70180197
- 2.
C.H.L. Goodman, I.G. Austin, and A.E. Pengelly, J. Electrochem. Soc. 103(11), 609 (1956). https://doi.org/10.1149/1.2430171
- 3.
J.I. Pankove, E.A. Miller, D. Richman, and J.E. Berkeyheiser, J. Luminesc. 4(1), 63 (1971). https://doi.org/10.1016/0022-2313(71)90009-3
- 4.
A. Punya, W.R.L. Lambrecht, and M. van Schilfgaarde, Phys. Rev. B 84(16), 165204 (2011). https://doi.org/10.1103/PhysRevB.84.165204
- 5.
N. Feldberg, J.D. Aldous, W.M. Linhart, L.J. Phillips, K. Durose, P.A. Stampe, R.J. Kennedy, D.O. Scanlon, G. Vardar, R.L. Field, T.Y. Jen, R.S. Goldman, T.D. Veal, and S.M. Durbin, Appl. Phys. Lett. 103, 4 (2013). https://doi.org/10.1063/1.4816438
- 6.
L. Lahourcade, N.C. Coronel, K.T. Delaney, S.K. Shukla, N.A. Spaldin, and H.A. Atwater, Adv. Mater. 25(18), 2562 (2013). https://doi.org/10.1002/adma.201204718
- 7.
F. Kawamura, N. Yamada, M. Imai, and T. Taniguchi, Cryst. Res. Technol. 51(3), 220 (2016). https://doi.org/10.1002/crat.201500258
- 8.
R. Qin, H. Cao, L. Liang, Y. Xie, F. Zhuge, H. Zhang, J. Gao, K. Javaid, C. Liu, and W. Sun, Appl. Phys. Lett. 108(14), 142104 (2016). https://doi.org/10.1063/1.4945728
- 9.
A.N. Fioretti, A. Stokes, M.R. Young, B. Gorman, E.S. Toberer, A.C. Tamboli, and A. Zakutayev, Adv. Electron. Mater. 3(3), 1600544 (2017). https://doi.org/10.1002/aelm.201600544
- 10.
P.C. Quayle, G.T. Junno, K. He, E.W. Blanton, J. Shan, and K. Kash, Phys. Status Solidi (b) 254(8), 1600718 (2017). https://doi.org/10.1002/pssb.201600718
- 11.
R.A. Makin, N. Senabulya, J. Mathis, N. Feldberg, P. Miska, R. Clarke, and S.M. Durbin, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Measur. Phenom. 35(2) (2017). https://doi.org/10.1116/1.4978021
- 12.
A.P. Jaroenjittichai and W.R.L. Lambrecht, Phys. Rev. B 94(12), 125201 (2016). https://doi.org/10.1103/PhysRevB.94.125201
- 13.
Inorganic crystal structure database (Fachinformationszentrum and Eggenstein-Leopoldshafen, D-7514 Karlsruhe, Germany)
- 14.
F. Arab, F.A. Sahraoui, K. Haddadi, A. Bouhemadou, and L. Louail, Phase Trans. 89(5), 480 (2016). https://doi.org/10.1080/01411594.2015.1089574
- 15.
R.J. Bruls, H.T. Hintzen, G. de With, R. Metselaar, and J.C. van Miltenburg, J. Phys. Chem. Solids (2001). https://doi.org/10.1016/S0022-3697(00)00258-4
- 16.
R.A. Makin, K. York, S.M. Durbin, N. Senabulya, J. Mathis, R. Clarke, N. Feldberg, P. Miska, C.M. Jones, Z. Deng, L. Williams, E. Kioupakis, and R.J. Reeves, Phys. Rev. Lett. 122(25), 256403 (2019). https://doi.org/10.1103/PhysRevLett.122.256403
- 17.
W.L. Bragg and E.J. Williams, Proc. R. Soc. Lond. Ser. A 145A, 699 (1934). https://doi.org/10.1098/rspa.1934.0132
- 18.
W.L. Bragg and E.J. Williams, Proc. R. Soc. Lond. Ser. A 151A, 540 (1935). https://doi.org/10.1098/rspa.1935.0165
- 19.
A. Ichimiya and P. Cohen, Reflection High-Energy Electron Diffraction (Cambridge: Cambridge University Press, 2004)
- 20.
D. Fang, X. Cheng, Y. Li, and Z. Sun, R. Soc. Chem. 6, 96327 (2016). https://doi.org/10.1039/c6ra13910h
- 21.
N. Feldberg, B. Keen, J.D. Aldous, D.O. Scanlon, P.A. Stampe, and R.J. Kennedy, 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2524–2527 (2011)
- 22.
N. Senabulya, N. Feldberg, R.A. Makin, Y. Yang, G. Shi, C.M. Jones, E. Kioupakis, J. Mathis, R. Clarke, and S.M. Durbin, AIP Adv. 6, 7 (2016). https://doi.org/10.1063/1.4960109
- 23.
B. Warren, X-Ray Diffraction Dover Books on Physics (Dover Publications, 2012)
- 24.
R.A. Makin, K. York, S.M. Durbin, and R.J. Reeves, Phys. Rev. B 102(11), 115202 (2020). https://doi.org/10.1103/PhysRevB.102.115202
- 25.
N. Feldberg, ZnSnN\(_{2}\): Growth and characterization of an earth abundant element material with order dependent properties. Ph.D. thesis, University at Buffalo, New York (2015)
- 26.
C. Biloiu, E. Scime, F. Doss, and I. Biloiu, (IEEE, Baltimore, MD, USA, 2004), pp. 239–239. https://doi.org/10.1109/PLASMA.2004.1339859
- 27.
M.A. Wistey, S.R. Bank, H.B. Yuen, H. Bae, and J.S. Harris, J. Cryst. Growth 278(1–4), 229 (2005). https://doi.org/10.1016/j.jcrysgro.2004.12.060
- 28.
H. Carrère, A. Arnoult, A. Ricard, and E. Bedel-Pereira, J. Cryst. Growth 243(2), 295 (2002). https://doi.org/10.1016/S0022-0248(02)01527-0
- 29.
H. Carrère, A. Arnoult, E. Bedel-Pereira, and A. Ricard, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 22(5), 2448 (2004). https://doi.org/10.1116/1.1788681
- 30.
E. Iliopoulos, A. Adikimenakis, E. Dimakis, K. Tsagaraki, G. Konstantinidis, and A. Georgakilas, J. Cryst. Growth 278(1–4), 426 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.013
Acknowledgements
This work stems from studies of disorder in ZnSnN\(_2\) and MgSnN\(_2\), funded in part by the National Science Foundation (Grants DMR-1410915 and DMR-2003581), and by a Western Michigan University Faculty Research and Creativity Activities Award. The authors acknowledge the financial support of the University of Michigan College of Engineering and NSF Grant DMR-1625671, and technical support from the Michigan Center for Materials Characterization.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
York, K.R., Makin, R.A., Senabulya, N. et al. Growth Parameter Based Control of Cation Disorder in MgSnN2 Thin Films. Journal of Elec Materi (2021). https://doi.org/10.1007/s11664-020-08708-4
Received:
Accepted:
Published:
Keywords
- MgSnN\(_2\)
- order parameter
- growth conditions
- molecular beam epitaxy
- thin films