Skip to main content
Log in

W and X Photoluminescence Centers in Crystalline Si: Chasing Candidates at Atomic Level Through Multiscale Simulations

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Several atomistic techniques have been combined to identify the structure of defects responsible for X and W photoluminescence lines in crystalline Si. We used kinetic Monte Carlo simulations to reproduce irradiation and annealing conditions used in photoluminescence experiments. We found that W and X radiative centers are related to small Si self-interstitial clusters but coexist with larger Si self-interstitials clusters that can act as nonradiative centers. We used molecular dynamics simulations to explore the many different configurations of small Si self-interstitial clusters, and selected those having symmetry compatible with W and X photoluminescence centers. Using ab initio simulations, we calculated their formation energy, donor levels, and energy of local vibrational modes. On the basis of photoluminescence experiments and our multiscale theoretical calculations, we discuss the possible atomic configurations responsible for W and X photoluminescence centers in Si. Our simulations also reveal that the intensity of photoluminescence lines is the result of competition between radiative centers and nonradiative competitors, which can explain the experimental quenching of W and X lines even in the presence of the photoluminescence centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Davies, Phys. Rep. 176, 83 (1989).

    Article  Google Scholar 

  2. G. Davies, E.C. Lightowlers, and Z.E. Ciechanowska, J. Phys. C: Solid State Phys. 20, 191 (1987).

    Article  Google Scholar 

  3. Z.E. Ciechanowska, G. Davies, and E.C. Lightowlers, Solid State Commun. 49, 427 (1984).

    Article  Google Scholar 

  4. J. Bao, M. Tabbal, T. Kim, S. Charnvanichborikarn, J.S. Williams, M.J. Aziz, and F. Capasso, Opt. Express 15, 6727 (2007).

  5. S. Buckley, J. Chiles, A.N. McCaughan, G. Moody, K.L. Silverman, M.J. Stevens, R.P. Mirin, and S.W. Nam, J.M. Shainline, Appl. Phys. Lett. 111, 141101 (2017).

    Article  Google Scholar 

  6. R.E. Harding, G. Davies, P.G. Coleman, and C.P. Burrows, J. Wong-Leung, Phys. B 738, 340 (2003).

    Google Scholar 

  7. B.C. Johnson, B.J. Villis, J.E. Burgess, N. Stavrias, J.C. McCallum, S. Charnvanichborikarn, J. Wong-Leung, C. Jagadish, and J.S. Williams, J. Appl. Phys. 111, 094910 (2012).

    Article  Google Scholar 

  8. R.E. Harding, G. Davies, S. Hayama, P.G. Coleman, and C.P. Burrows, J. Wong-Leung, Appl. Phys. Lett. 89, 181917 (2006).

    Article  Google Scholar 

  9. P.K. Giri, S. Coffa, and E. Rimini, Appl. Phys. Lett. 78, 291 (2001).

    Article  Google Scholar 

  10. S. Charnvanichborikarn, B. Villis, B. Johnson, J. Wong-Leung, J. McCallum, J. Williams, and C. Jagadish, Appl. Phys. Lett. 96, 051906 (2010).

    Article  Google Scholar 

  11. J. Adey, J.P. Goss, R. Jones, and P.R. Briddon, Phys. Rev. B 67, 245325 (2003).

    Article  Google Scholar 

  12. M. Aboy, I. Santos, L. Pelaz, L. Marqués, and P. López, 2011 IEEE Spanish Conference on Electron Devices, p. 051906 (2011)

  13. S. Hayama, G. Davies, and K.M. Itoh, J. Appl. Phys. 96, 1754 (2004).

    Article  Google Scholar 

  14. L. Pelaz, L.A. Marqués, M. Aboy, P.López, and I. Santos, Eur. Phys. J. B 72, 323 (2009).

    Article  Google Scholar 

  15. S. Chakravarthi and S. Dunham, J. Appl. Phys. 89, 4758 (2001).

    Article  Google Scholar 

  16. S. Plimpton, J. Comp. Phys. 117, 1 (1995). http://lammps.sandia.gov

  17. J. Tersoff, Phys. Rev. B 38, 9902 (1988).

    Article  Google Scholar 

  18. A. Carvalho, R. Jones, J. Coutinho, and P.R. Briddon, Phys. Rev. B 72, 155208 (2005).

    Article  Google Scholar 

  19. R. Bondi, S. Lee, and G. Hwang, Phys. Rev. B 80, 125202 (2009).

    Article  Google Scholar 

  20. N. Arai, S. Takeda, and M. Kohyama, Phys. Rev. Lett. 78, 4265 (1997).

    Article  Google Scholar 

  21. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  22. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  24. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  25. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, and C.V. de Walle, Rev. Mod. Phys. 86, 253 (2014).

    Article  Google Scholar 

  26. I. Santos, M. Aboy, P. López, L.A. Marqués, and L. Pelaz, J. Phys. D: Appl. Phys. 49, 075109 (2016).

    Article  Google Scholar 

  27. D.A. Richie, J. Kim, S.A. Barr, K.R.A. Hazzard, R. Hennig, and J.W. Wilkins, Phys. Rev. Lett. 92, 045501 (2004).

    Article  Google Scholar 

  28. I. Pelant, J. Valenta, Experimental Techniques of Luminescence Spectroscopy (Oxford University Press, 2012), chap. 7, p. 186

  29. F. Favot and A. Dal Corso, Phys. Rev. B 60, 11427 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the EU (FEDER) and the Spanish Ministerio de Ciencia e Innovación under Project No. TEC2014-60694-P, and by the Junta de Castilla y León under Project No. VA331U14. The authors thank the Spanish Supercomputing Network for computational time provided through Project No. QCM-2014-3-0034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Aboy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboy, M., Santos, I., López, P. et al. W and X Photoluminescence Centers in Crystalline Si: Chasing Candidates at Atomic Level Through Multiscale Simulations. J. Electron. Mater. 47, 5045–5049 (2018). https://doi.org/10.1007/s11664-018-6300-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6300-z

Keywords

Navigation