Skip to main content
Log in

Identification of Extended Defect Atomic Configurations in Silicon Through Transmission Electron Microscopy Image Simulation

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We used atomistic simulation tools to correlate experimental transmission electron microscopy images of extended defects in crystalline silicon with their structures at an atomic level. Reliable atomic configurations of extended defects were generated using classical molecular dynamics simulations. Simulated high-resolution transmission electron microscopy (HRTEM) images of obtained defects were compared to experimental images reported in the literature. We validated the developed procedure with the configurations proposed in the literature for {113} and {111} rod-like defects. We also proposed from our procedure configurations for {111} and {001} dislocation loops with simulated HRTEM images in excellent agreement with experimental images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Claverie, B. Colombeau, F. Cristiano, A. Altibelli, and C. Bonafos, Nucl. Instrum. Methods Phys. Res. B 186, 281 (2002)

    Article  Google Scholar 

  2. B. de Mauduit, L. Laânab, C. Bergaud, M.M. Faye, A. Martinez, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 84, 190 (1994)

    Article  Google Scholar 

  3. P.A. Stolk, H.J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraíz, J.M. Poate, H.S. Luftman, and T.E. Haynes, J. Appl. Phys. 81, 6031 (1997)

    Article  Google Scholar 

  4. S. Takeda, Microsc. Res. Tech. 40, 313 (1998).

    Article  Google Scholar 

  5. L. Fedina, A. Gutakovskii, A. Aseev, J.V. Landuyt, and J. Vanhellemont, Philos. Mag. A 77, 423 (1998).

    Article  Google Scholar 

  6. K.J. Dudeck, L.A. Marqués, A.P. Knights, R.M. Gwilliam, and G.A. Botton, Phys. Rev. Lett. 110, 166102 (2013).

    Article  Google Scholar 

  7. Y. Qiu, F. Cristiano, K. Huet, F. Mazzamuto, G. Fisicaro, A. La Magna, M. Quillec, N. Cherkashin, H. Wang, S. Duguay, and D. Blavette, Nano Lett. 14, 1769 (2014)

    Article  Google Scholar 

  8. A. Claverie and N. Cherkashin, Nucl. Instrum. Methods Phys. Res. B 374, 82 (2016)

    Article  Google Scholar 

  9. L. Pelaz, L.A. Marqués, M. Aboy, P. López, and I. Santos, Eur. Phys. J. B 72, 323 (2009)

    Article  Google Scholar 

  10. M. Aboy, I. Santos, L. Pelaz, L.A. Marqués, and P. López, J. Comput. Electron. 13, 40 (2014)

    Article  Google Scholar 

  11. F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L.F. Giles, and N.E.B. Cowern, J. Appl. Phys. 87, 8420 (2000)

    Article  Google Scholar 

  12. F. Cristiano, N. Cherkashin, X. Hebras, P. Calvo, Y. Lamrani, E. Scheid, B. de Mauduit, B. Colombeau, W. Lerch, S. Paul, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 216, 46 (2004)

    Article  Google Scholar 

  13. S. Takeda, S. Muto, and M. Hirata, Jpn. J. Appl. Phys. 29, L1698 (1990)

    Article  Google Scholar 

  14. S. Takeda, Jpn. J. Appl. Phys. 30, L639 (1991)

    Article  Google Scholar 

  15. G.Z. Pan and K.N. Tu, J. Appl. Phys. 82, 601 (1997)

    Article  Google Scholar 

  16. S. Plimpton, J. Comput. Phys. 117, 1 (1995). http://lammps.sandia.gov

  17. J. Tersoff, Phys. Rev. B 38, 9902 (1988)

    Article  Google Scholar 

  18. L.A. Marqués, L. Pelaz, P. Castrillo, and J. Barbolla, Phys. Rev. B 71, 085204 (2005)

    Article  Google Scholar 

  19. L.A. Marqués, L. Pelaz, I. Santos, P. López, and M. Aboy, Phys. Rev. B 78, 193201 (2008)

    Article  Google Scholar 

  20. L.A. Marqués, M. Aboy, K.J. Dudeck, G.A. Botton, A.P. Knights, and R.M. Gwilliam, J. Appl. Phys. 115, 143514 (2014)

    Article  Google Scholar 

  21. L.A. Marqués, M. Aboy, M. Ruiz, I. Santos, P. López, and L. Pelaz, Mater. Sci. Semicond. Process. 42, 235 (2016)

    Article  Google Scholar 

  22. QSTEM: Quantitative TEM/STEM Simulations. http:// qstem.org

  23. S. Boninelli, N. Cherkashin, A. Claverie, and F. Cristiano, Appl. Phys. Lett. 89, 161904 (2006)

    Article  Google Scholar 

  24. S. Muto and S. Takeda, Philos. Mag. Lett. 72, 99 (1995)

    Article  Google Scholar 

  25. N. Arai, S. Takeda, and M. Kohyama, Phys. Rev. Lett. 78, 4265 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, I., Ruiz, M., Aboy, M. et al. Identification of Extended Defect Atomic Configurations in Silicon Through Transmission Electron Microscopy Image Simulation. J. Electron. Mater. 47, 4955–4958 (2018). https://doi.org/10.1007/s11664-018-6140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6140-x

Keywords

Navigation