Skip to main content
Log in

Orientation Dependence of Columnar Dendritic Growth with Sidebranching Behaviors in Directional Solidification: Insights from Phase-Field Simulations

  • Topical Collection: Metallurgical Processes Workshop for Young Scholars
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a thin-interface phase-field model was employed to study the orientation dependence of the columnar dendritic growth with sidebranching behaviors in directional solidification. It was found that the dimensionless tip undercooling increases with the increase of misorientation angle for three pulling velocities. The primary spacing is found to be a function of misorientation angle, and the dimensionless primary spacing with respect to the misorientation angle follows the orientation correction given by Gandin and Rappaz (Acta. Metall. 42:2233–2246, 1994). For the analysis of the dendritic tip, the two-dimensional (2-D) form of the nonaxisymmetric needle crystal was used to determine the radius of the tilted columnar dendrite. Based on the definitions of open side and constrained side of the dendrite, the analysis of the width active sidebranches and the dendritic area in 2-D with respect to the distance from the dendritic tip was carried out to investigate the asymmetrical dendrite envelop and sidebranching behaviors on the two sides in directional solidification. The obtained prefactor and exponent with respect to misorientation angle are discussed, showing that the sidebranching behaviors of a tilted columnar dendritic array obey a similar power-law relationship with that of a free dendritic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Dantzig and M. Rappaz: Solidification, 1st ed., EPFL Press, Lausanne, 2009.

    Book  Google Scholar 

  2. D.K. Sun, M.F. Zhu, S.Y. Pan, and D. Raabe: Acta Mater., 2009, vol. 57, 1755–67.

    Article  Google Scholar 

  3. D.K. Sun, M.F. Zhu, S.Y. Pan, C.R. Yang, and D. Raabe: Compd. Math Appl., 2011, vol. 61 (12), pp. 3585–92.

    Article  Google Scholar 

  4. G.W. Wang, J.J. Liang, and Y.Z. Zhou: J. Mater. Sci. Technol., 2017, vol. 33, pp. 499–506.

    Article  Google Scholar 

  5. G.P. Ivantsov: Dokl. Akad. Nauk. SSSR, 1947, vol. 58, pp. 567–69.

    Google Scholar 

  6. A. Barbieri and J. Langer: Phys. Rev. A, 1989, vol. 39, pp. 5314–25.

    Article  Google Scholar 

  7. J. Langer: Science, 1989, vol. 243, pp. 1150–56.

    Article  Google Scholar 

  8. M. Ben-Amar and E. Brener: Phys. Rev. Lett., 1993, vol. 71, p. 589.

    Article  Google Scholar 

  9. J. Warren and J. Langer: Phys. Rev. A, 1990, vol. 42, p. 3518.

    Article  Google Scholar 

  10. W. Huang, X. Geng, and Y. Zhou: J. Cryst. Growth, 1993, vol. 134, pp. 105–15.

    Article  Google Scholar 

  11. A.G. Borisov, S.R. Fedorov, and V.V. Maslov: J. Cryst. Growth, 1991, vol. 112, 463–66.

    Article  Google Scholar 

  12. R. Trivedi, V. Seetharaman, and M. Eshelman: Metall. Trans. A, 1991, vol. 22A, pp. 585–93.

    Article  Google Scholar 

  13. S. Akamatsu and T. Ihle: Phys. Rev. E, 1997, vol. 56, pp. 4479–85.

    Article  Google Scholar 

  14. J. Deschamps, M. Georgelin, and A. Pocheau: Phys. Rev. E, 2008, vol. 78, p. 011605.

    Article  Google Scholar 

  15. J. Li, Z. Wang, Y. Wang, and J. Wang: Acta Mater., 2012, vol. 60, 1478–93.

    Article  Google Scholar 

  16. J. Ghmadh, J.-M. Debierre, J. Deschamps, et al.: Acta Mater., 2014, vol. 74, pp. 255–67.

    Article  Google Scholar 

  17. H. Xing, X.L. Dong, C.L. Chen, et al.: Int. J. Heat Mass Transfer, 2015, vol. 90, pp. 811–21.

    Article  Google Scholar 

  18. D. Tourret and A. Karma: Acta Mater., 2015, vol. 82, pp. 64–83.

    Article  Google Scholar 

  19. H. Xing, L.M. Zhang, K. Song, H.M. Chen, and K.K. Jin: Int. J. Heat Mass Transfer, 2017, vol. 104, pp. 607–14.

    Article  Google Scholar 

  20. R.N. Grugel and Y. Zhou: Metall. Trans. A, 1989, vol. 20A, pp. 969–73.

    Article  Google Scholar 

  21. C.-A. Gandin and M. Rappaz: Acta Metall., 1994, vol. 42, pp. 2233–46.

    Article  Google Scholar 

  22. C.-A. Gandin, M. Eshelman, and R. Trivedi: Metall. Mater. Trans. A, 1996, vol. 27A, 2727–39.

    Article  Google Scholar 

  23. J.S. Langer and H. Müller-Krumbhaar: Acta Metall., 1978, vol. 26, pp. 1681–87.

    Article  Google Scholar 

  24. E. Brener: Phys. Rev. Lett., 1993, vol. 71, p. 3653.

    Article  Google Scholar 

  25. E. Brener and D. Temkin: Phys. Rev. E, 1995, vol. 51, p. 351.

    Article  Google Scholar 

  26. Y. Couder, J. Maurer, R. González-Cinca, et al.: Phys. Rev. E, 2005, vol. 71, p. 031602.

    Article  Google Scholar 

  27. B. Echebarria, A. Karma, and S. Gurevich: Phys. Rev. E, 2010, vol. 81, pp. 275–82.

    Article  Google Scholar 

  28. A. Rai, M. Markl, and C. Körner: Comp. Mater. Sci., 2016, vol. 127, pp. 37–48.

    Article  Google Scholar 

  29. X. Zhang, J. Zhao, H. Jiang, et al.: Acta Mater., 2012, vol. 60, pp. 2249–57.

    Article  Google Scholar 

  30. I. Steinbach: JOM, 2013, vol. 65, 1096–1102.

    Article  Google Scholar 

  31. X.L. Dong, H. Xing, K.R. Weng, and H.L. Zhao: J. Iron Steel Res. Int., 2017, vol. 24, pp. 865–78.

    Article  Google Scholar 

  32. A. Karma: Phys. Rev. E, 1998, vol. 57, pp. 4323–49.

    Article  Google Scholar 

  33. A. Karma: Phys. Rev. Lett., 2001, vol. 87, pp. 115701.

    Article  Google Scholar 

  34. B. Echebarria, R. Folch, and A. Karma: Phys. Rev. E, 2004, vol. 70, p. 061604.

    Article  Google Scholar 

  35. L.Q. Chen: Ann. Rev. Mater. Res., 2002, vol. 32 (32), pp. 113–40.

    Article  Google Scholar 

  36. H. Xing, X.L. Dong, H.J. Wu, et al.: Sci. Rep., 2016, vol. 6, p. 26625.

    Article  Google Scholar 

  37. K. Ankit, H. Xing, M. Selzer, B. Nestler, and M.E. Glicksman: J. Cryst. Growth, 2017, 457, pp. 52–59.

    Article  Google Scholar 

  38. D. Tourret, Y. Song, A. Clarke, and A. Karma: Acta Mater., 2017, vol. 122, pp. 220–35.

    Article  Google Scholar 

  39. T. Takaki, M. Ohno, T. Shimokawabe, et al.: Acta Mater., 2014, vol. 81, pp. 272–83.

    Article  Google Scholar 

  40. Y. Shibuta, M. Ohno, and T. Takaki: JOM, 2015, vol. 67, pp. 1793–1804.

    Article  Google Scholar 

  41. C. Guo, J. Li, and H. Yu: Acta Mater., 2017, vol. 136, pp. 148–63.

    Article  Google Scholar 

  42. S. Liu, R.E. Napolitano, and R. Trivedi: Acta Mater., 2017, vol. 49, pp. 4271–76.

    Article  Google Scholar 

  43. L. Wang, N. Wang, and N. Provatas: Acta Mater., 2017, vol. 126, pp. 302–12.

    Article  Google Scholar 

  44. M. Ohno: Phys. Rev. E, 2012, vol. 86, p. 051603.

    Article  Google Scholar 

  45. M. Ohno and K. Matsuura: Acta Mater., 2010, vol. 58, pp. 5749–58.

    Article  Google Scholar 

  46. A. Karma and W.-J. Rappel: Phys. Rev. E, 1999, vol. 60, p. 3614.

    Article  Google Scholar 

  47. Y. Chen, B. Billia, D.Z. Li, et al.: Acta Mater., 2014, vol. 66, pp. 219–31.

    Article  Google Scholar 

  48. B. Utter, R. Ragnarsson, and E. Bodenschatz: Phys. Rev. Lett., 2001, vol. 86, pp. 4604–07.

    Article  Google Scholar 

  49. D. Walton and B. Chalmers: Trans. TMS-AIME, 1959, vol. 215, pp. 447–57.

    Google Scholar 

  50. Q. Li and C. Beckermann: Phys. Rev. E, 1998, vol. 57, pp. 3176–88.

    Article  Google Scholar 

  51. A.J. Melendez and C. Beckermann: J. Cryst. Growth, 2012, vol. 340, pp. 175–89.

    Article  Google Scholar 

  52. I. Steinbach, B. Kauerauf, Q. Li, et al.: Acta Mater., 1999, vol. 4, pp. 971–82.

    Article  Google Scholar 

  53. Y. Souhar, V. Felice, C. Beckermann, et al.: Comp. Mater. Sci., 2014, vol. 112, pp. 304–17.

    Article  Google Scholar 

  54. A. Viardin, M. Založnik, Y. Souhar, et al.: Acta Mater., 2017, vol. 122, pp. 386–99.

    Article  Google Scholar 

  55. M.E. Glicksman: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 391–404.

    Article  Google Scholar 

  56. M.E. Glicksman: Principles of Solidification, Springer, New York, NY, 2011, pp. 305–12.

    Book  Google Scholar 

  57. M.E. Glicksman, J.S. Lowengrub, S.W. Li, and X.R. Li: JOM, 2007, vol. 59, pp. 27–34.

    Article  Google Scholar 

  58. Z. Wang, J. Wang, and G. Yang: Phys. Rev. E, 2008, vol. 78, p. 042601.

    Article  Google Scholar 

  59. A. Dougherty and J.P. Gollub: Phys. Rev. A, 1998, vol. 38, pp. 3043–53.

    Article  Google Scholar 

  60. M.A. Chopra, M.E. Glicksman, and N.B. Singh: J. Cryst. Growth, 1988, vol. 92, pp. 543–46.

    Article  Google Scholar 

  61. U. Bisang and J.H. Bilgram: Phys. Rev. E, 1996, vol. 75, pp. 5309–26.

    Article  Google Scholar 

  62. D.P. Corrigan, M.B. Koss, J.C. Lacombe, et al.: Phys. Rev. E, 1999, vol. 60, p. 7217.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51701160 and 51471134) and the Fund of the State Key Solidification Laboratory of Solidification Processing in Northwestern Polytechnical University (Grant No. SKLSP 201714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Xing.

Additional information

Manuscript submitted July 31, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Dong, X., Wang, J. et al. Orientation Dependence of Columnar Dendritic Growth with Sidebranching Behaviors in Directional Solidification: Insights from Phase-Field Simulations. Metall Mater Trans B 49, 1547–1559 (2018). https://doi.org/10.1007/s11663-018-1265-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1265-0

Keywords

Navigation