Skip to main content
Log in

Mathematical Modeling of Decarburization in Levitated Fe-Cr-C Droplets

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Using carbon dioxide to replace oxygen as an alternative oxidant gas has proven to be a viable solution in the decarburization process, with potential for industrial applications. In a recent study, the transport phenomena governing the carbon dioxide decarburization process through the use of electromagnetic levitation (EML) was examined. CO2/CO mass transfer was found to be the principal reaction rate control step, as a result gas diffusion has gained significant attention. In the present study, gas diffusion during decarburization process was investigated using computational fluid dynamics (CFD) modeling coupled with chemical reactions. The resulting model was verified through experimental data in a published paper, and employed to provide insights on phenomena typically unobservable through experiments. Based on the results, a new correction of the Frössling equation was presented which better represents the mass transfer phenomena at the metal-gas interface within the range of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Sh:

Sherwood number

Re:

Reynolds number, \( \left( { = \frac{{d_{\text{p}} v\rho_{\text{g}} }}{{\mu_{\text{g}} }}} \right) \)

Sc:

Schmidt number, \( \left( { = \frac{{\mu_{\text{g}} }}{{\rho_{\text{g}} D_{\text{AB}} }}} \right) \)

Pr:

Prandtl number, \( \left( { = \frac{{Cp\mu_{\text{g}} }}{k}} \right) \)

Ra:

Rayleigh number, \( \left( { = Gr^{\prime}{\text{Sc}}} \right) \)

\( Gr^{\prime} \) :

Mean Grashof number, (= Grm + GrH(Sc/Pr)0.5)

Gr m :

Grashof number for mass transfer, \( \left( { = \frac{{\rho_{\text{g}} gd_{\text{p}}^{3} (C_{\text{i}} - C_{\text{b}} )}}{{v_{\text{g}}^{2} }}} \right) \)

Gr H :

Grashof number for heat transfer, \( \left( { = \frac{{gd_{\text{p}}^{3} (T_{\text{i}} - T_{\text{b}} )}}{{T_{\text{f}} v_{\text{g}}^{2} }}} \right) \)

v :

Velocity, m s−1

p :

Pressure, Pa

C p :

Specific heat, J g−1 K−1

k :

Thermal conductivity, W m−1 K−1

S m :

The mass source due to chemical reaction

\( \overline{\overline{\tau }} \) :

Stress tensor, Nm−2

ρ :

Density, kg m−3

\( {\vec{\text{F}}} \) :

External body forces, N

k eff :

Effective conductivity of the gas mixture

T :

Temperature, K

h j :

Enthalpy, \( \left( {\int_{298}^{T} {c_{p,j} dT} } \right),\,J \)

\( \vec{J}_{j} \) :

Diffusion flux of species j

S h :

Source term, includes the heat of chemical reaction and other volumetric heat source

h:

Sensible enthalpy of gas flow, (= ∑jYjhj)

Y j :

Mass fraction of species j

D i, m :

Mass diffusion coefficient for species i in the mixture

D T, i :

Thermal diffusion coefficient

k f,r :

Forward rate constant for reaction r

k b,r :

Backward rate constant for reaction r

[C i]suf :

Molar concentrations of gaseous species

[S i]suf :

Molar concentrations of site species

\( \eta^{\prime}_{i,g,r} {\text{ and }}\eta^{\prime\prime}_{\"i ,g,r} \) :

The rate exponents for the ith gaseous species as reactant and product, respectively

\( \eta^{\prime}_{j,s,r} {\text{ and }}\eta^{\prime\prime}_{j,s,r} \) :

The rate exponents for the jth site species as reactant and product, respectively

A r :

Pre-exponential factor (consistent units)

β r :

Temperature exponent (dimensionless)

E r :

Activation energy for the reaction, J kmol−1

R :

Universal gas constant, J kmol−1 K−1

K r :

Equilibrium constant for rth reaction

\( \Delta S_{r} \) :

Entropy change, J mol−1 K−1

\( \Delta H_{r} \) :

Enthalpy change, J

p atm :

Atmospheric pressure, 101325 Pa

N types :

The number of different types of sites

N g :

The number of different types of gases

N s,k :

The number of site species of type k

(ρ s)k :

Site density of site type k

\( \nu^{\prime\prime}_{\"i ,r} {\text{ and }}\nu^{\prime}_{i,r} \) :

Stoichiometric coefficients of product i and reactant i in reaction r, separately

\( \nu^{\prime\prime}_{j,k,r} {\text{ and }}\nu^{\prime}_{j,k,r} \) :

Stoichiometric coefficients of the jth site species of type k in reaction r

[C]:

Mass fraction of carbon in the droplet

T :

Time, s

\( J_{{{\text{CO}}_{ 2} }} \) :

Flux of CO2, mol m−2 s−1

A:

Superficial area of the droplet, m2

W:

Weight of the droplet, kg

D AB :

Mutual diffusion coefficient in gas phase, m2 s−1

\( X_{{{\text{CO}}_{ 2} }}^{\text{b}} \) :

Mole fraction of CO2 in the bulk gas

\( X_{{{\text{CO}}_{ 2} }}^{i} \) :

Mole fraction of CO2 at the gas-metal interface

d p :

Diameter of the droplet, m

T f :

Film temperature, \( \left( { = \frac{{T_{i} + T_{b} }}{2}} \right) \)

T i :

Gas–metal interface temperature, K

T b :

Bulk gas temperature, K

k x :

Mass transfer coefficient, mol m−2 s−1 atm−1

L:

Characteristic length, m

ρ g :

Gas density, kg m−3

μ g :

Dynamic viscosity, Pa s

v g :

Kinematic viscosity, m2 s−1

d h :

Hydraulic diameter, m

r 0 :

Radius of the pipe, m

r i :

Radius of the droplet, m

Reh :

Reynolds number, \( \left( { = \frac{{d_{h} v_{h} \rho_{g} }}{{\mu_{g} }}} \right) \)

v h :

Velocity near droplet surface, m s−1

Sh 0 :

Sherwood number due only to natural convection and not forced convection

γ:

Coefficient in Eq. [20]

β:

Coefficient in Eq. [21]

References

  1. S. I. Bakhtiyarov and D. A. Siginer: FDMP, 2008, vol. 4, pp. 99-112.

    Google Scholar 

  2. A. Seidel, W. Soellner, and C. Stenzel: J. Phys. Conf. Ser., 2011, vol. 327, pp. 1-11.

    Google Scholar 

  3. D. Herlach: Appl. Mech. Mater., 2014, vol. 526, pp. 21-27.

    Article  Google Scholar 

  4. C. Yang and J. Gao: J. Cryst. Growth., 2014, vol. 394, pp. 24-27.

    Article  Google Scholar 

  5. A. McLean: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 319-32.

    Article  Google Scholar 

  6. J. Little, M. Van Oosten, and A. McLean: Can. Metall. Q., 1968, vol. 7, pp. 235-46.

    Article  Google Scholar 

  7. P. Kershaw, A. McLean, and R.G. Ward: Can. Metall. Q., 1972, vol. 11, pp. 327-36.

    Article  Google Scholar 

  8. J. G. Dondelinger, D. A. R. Kay, and A. McLean: Metall. Mater. Trans. B, 1971, vol. 2, pp. 3203-08.

    Article  Google Scholar 

  9. J. Siwka: ISIJ Int., 2008, vol. 48, pp. 385-94.

    Article  Google Scholar 

  10. J. Siwka and A. Hutny: Metalurgija., 2009, vol. 48, pp. 23-27.

    Google Scholar 

  11. M. Beaudhuin, K. Zaidat, T. Duffar, and M. Lemiti: J. Mater. Sci., 2010, vol. 45, pp. 2218-22.

    Article  Google Scholar 

  12. P. Wu, Y. Yang, M. Barati and A. McLean: High Temperature Material and Process, 2014, Vol. 33, pp. 477-83.

    Google Scholar 

  13. P. Wu, Y. Yang, M. Barati, and A. McLean: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2211-21.

    Article  Google Scholar 

  14. W.E. Ranz and W.R. Marshall: Chem. Eng. Prog., 1952, vol. 48, pp. 141-46.

    Google Scholar 

  15. R.L. Steinberger and R. E. Treybal: AIChE J., 1960, vol. 6, pp. 227-32.

    Article  Google Scholar 

  16. L. Gao, Z. Shi, D. Li, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1905-15.

    Article  Google Scholar 

  17. L. Gao, Z. Shi, D. Li, Y. Yang, G. Zhang, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B, 2016, vol. 47, pp. 67-75.

    Article  Google Scholar 

  18. J. Lee, D.M. Matson, S. Binder, M. Kolbe, D. Herlach, and R.W. Hyers: Metall. Mater. Trans. B, 2013, vol. 45, pp. 1018-23.

    Google Scholar 

  19. J. Lee, X. Xiao, D.M. Matson, and R.W. Hyers: Metall. Mater. Trans. B, 2014, vol. 46, pp. 199-207.

    Google Scholar 

  20. L. Gao, Z. Shi, D. Li, G. Zhang, Y. Yang, A. McLean, and K. Chattopadhyay: Metall. Mater. Trans. B. 2016, vol. 47, pp. 537-47.

    Article  Google Scholar 

  21. ANSYS Inc. ANSYS Fluent Theory Guide, http://www.ansys.com, 2013.

  22. G. R. Belton and D.R. Sain: Metall. Mater. Trans. B, 1976, vol. 7, pp. 235-44.

    Google Scholar 

  23. F. P. Incropera, D. P. Devitt, T. L. Bergman, and A. S. Lavine: Fundamentals of Heat and Mass Transfer, 6nd ed., John Wiley & sons Inc., Hoboken, NJ,2006, pp. 381-989.

    Google Scholar 

  24. D. J. Zuliani and A. McLean: Can. Metall. Q., 1979, vol. 18, pp. 323-31.

    Article  Google Scholar 

  25. W.G. Mathers, A.J. Madden and E.L. Piret: Fluid Mechanics in Chemical Engineering., 1957, vol. 49, pp. 961-68.

    Google Scholar 

Download references

Acknowledgments

Acknowledgments are expressed to the Natural Sciences and Engineering Research Council of Canada for the support of steel-related research at the University of Toronto, the National Natural Science Foundation of China under Grant No. 51664036 and Science Foundation of Yunnan Provincial Department of Education under Grant No. 2016CYH07. The authors also would like to thank the Chinese Scholarship Council for funding, and ANSYS Inc., and SimuTech Group for their support towards the mathematical modeling performed in this study. The comments from Alvin Ma and Dr. Paul Wu are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinnor Chattopadhyay.

Additional information

Manuscript submitted May 6, 2016.

Appendix

Appendix

See Tables AI and AII.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Shi, Z., Yang, Y. et al. Mathematical Modeling of Decarburization in Levitated Fe-Cr-C Droplets. Metall Mater Trans B 49, 1985–1994 (2018). https://doi.org/10.1007/s11663-018-1248-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1248-1

Keywords

Navigation