Skip to main content
Log in

Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. F. Neumann: Ironmaker Steelmaker, 2002, vol. 29, pp. 358-74.

    Google Scholar 

  2. R. Bommaraju: ISS Steelmaking Conf. Proc., 1991, pp. 131–46.

  3. R. Taylor and K.C. Mills: Ironmaker Steelmaker, 1988, vol. 15, pp. 187-94.

    Google Scholar 

  4. J.W. Cho, T. Emi, H. Shibata, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 834-42.

    Article  Google Scholar 

  5. A. Yamauchi: Ph.D. Dissertation, KTH, Stockholm, 2001.

  6. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685-705.

    Article  Google Scholar 

  7. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 707-25.

    Article  Google Scholar 

  8. Y. Meng and B.G. Thomas: ISIJ Int., 2006, vol. 46, pp. 660-9.

    Article  Google Scholar 

  9. A. Jonayat and B.G. Thomas: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1842-64.

    Article  Google Scholar 

  10. P.E. Ramirez Lopez, U. Sjöström, T. Jonsson, P.D. Lee, K.C. Mills, M. Petäjäjärvi, and J. Pirinen: Mater. Sci. Eng., 2012, vol. 33, pp. 1-10.

    Google Scholar 

  11. P.E. Ramirez Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 109-22.

    Article  Google Scholar 

  12. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 355-71.

    Article  Google Scholar 

  13. A. Badri, T.T. Natarajan, C.C. Snyder, K.D. Powers, F.J. Mannion, M. Byrne, and A.W. Cramb: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 373-83.

    Article  Google Scholar 

  14. J. Sengupta and B.G. Thomas: JOM, 2006, vol. 58, pp. 16–8.

    Article  Google Scholar 

  15. H.J. Shin, S.H. Kim, B.G. Thomas, G.G. Lee, J.M. Park, and J. Sengupta: ISIJ Int., 2006, vol. 46, pp. 1635-44.

    Article  Google Scholar 

  16. K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 226-33.

    Article  Google Scholar 

  17. K. Okazawa, T. Kajitani, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 234-40.

    Article  Google Scholar 

  18. T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 250-6.

    Article  Google Scholar 

  19. T. Kajitani, K. Okazawa, W. Yamada, and H. Yamamura: ISIJ Int., 2006, vol. 46, pp. 1432-41.

    Article  Google Scholar 

  20. M. Hanao and M. Kawamoto: ISIJ Int., 2008, vol. 48, pp. 180-5.

    Article  Google Scholar 

  21. A. Yamauchi, T. Emi, and S. Seetharaman: ISIJ Int., 2002, vol. 42, pp. 1084-93.

    Article  Google Scholar 

  22. X.N. Meng and M.Y. Zhu: ISIJ Int., 2009, vol. 49, pp. 1356-61.

    Article  Google Scholar 

  23. X.N. Meng and M.Y. Zhu: J. Central South University, 2013, vol. 20, pp. 318-25.

    Article  Google Scholar 

  24. X.N. Meng, W.L. Wang, and M.Y. Zhu: Chin. J. Nonferr. Metal., 2012, vol. 22, pp. 2238-45.

    Article  Google Scholar 

  25. X.N. Meng, W.L. Wang, and M.Y. Zhu: J. Univ. Sci. Technol. Beijing, 2012, vol. 34, pp. 1416-20.

    Google Scholar 

  26. X.N. Meng, M.Y. Zhu, and N.L. Cheng: Acta Metall. Sin., 2007, vol. 43, pp. 839-46.

    Google Scholar 

  27. X.N. Meng and M.Y. Zhu: Ironmaker Steelmaker, 2009, vol. 36, pp. 300-10.

    Article  Google Scholar 

  28. X.N. Meng and M.Y. Zhu: Can. Metall. Q., 2011, vol. 50, pp. 45-53.

    Article  Google Scholar 

  29. J. Yang, X.N. Meng, and M.Y. Zhu: Steel Res. Int., 2014, vol. 85, pp. 710-7.

    Article  Google Scholar 

  30. O.D. Kwon, J. Choi, I.R. Lee, J.W. Kom, K.H. Moon, and Y.K. Shin: ISS Steelmaking Conf. Proc., 1991, pp. 561–68.

  31. M. Suzuki, S. Miyahara, T. Kitagawa, S. Uchida, T. Mori, and K. Okimoto: Tetsu-to-Hagané, 1992, vol. 78, no. 1, pp. 113-20.

    Google Scholar 

  32. J.M. Zhang, L. Zhang, X.H. Wang, and L.F. Wang: Acta Metall. Sin., 2003, vol. 39, pp. 1285-90.

    Google Scholar 

  33. J.J. Bikerman: Physical Surfaces, Academic Press, Atlanta, GA, 1970, pp. 11-2.

    Google Scholar 

  34. Y. Chung and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 957-71.

    Article  Google Scholar 

  35. S.Z. Wen and P. Huang: Principles of Tribology, Tsinghua University Press, Beijing, 2008.

    Google Scholar 

  36. E. Takeuchi and J.K. Brimaconbe: Metall. Trans. B, 1984, vol. 15B, pp. 493-509.

    Article  Google Scholar 

  37. A.W. Cramb and I. Jimbo: Ironmaker Steelmaker, 1989, vol. 16, pp. 43-55.

    Google Scholar 

  38. J. Lee and K. Morita: ISIJ Int., 2002, vol. 42, pp. 588-94.

    Article  Google Scholar 

  39. K.C. Mills and Y.C. Su: Int. Mater. Rev., 2006, vol. 51, pp. 329-51.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of Fundamental Research Funds for the Central Universities of China (N140205002) and the National Natural Science Foundation of China (51004031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XIANGNING Meng.

Additional information

Manuscript submitted March 23, 2016.

Appendix

Appendix

An iteration method is used for calculating the thickness variation of the liquid-slag layer in the process of reciprocating oscillation of mold. During the iterative process, the liquid film thickness is computed at each time step by combining the dynamic channel pressure and the static pressure of molten steel. The calculation starts by setting the initial oscillation velocity, v 0, which corresponds with the oscillation moments A and B in Figure 5 for two oscillation modes, respectively. The position at 7 mm below the steel free surface is chosen as the initial flux thickness, h 0, as shown in Figure 3. The flux channel pressure and total pressure are then calculated with Eqs. [10] and [11]. Based on the Newton’s Second Law of Motion, the horizontal acceleration of the solidified shell a i is obtained by a resultant force between the total channel pressure and the static pressure of molten steel:

$$ F_{i} - \int_{0}^{l} {P_{\text{s}} } dx = Ma_{i} $$
(A1)

where P s is the static pressure of molten steel and M is the mass of the solidified shell of 64,000 kg × m−1.[17]

Then, the displacement distance of solidified shell, h i , is calculated with Eqs. [A2] and [A3] at this time step:

$$ u_{i} = u_{0} + a_{i} t $$
(A2)
$$ h_{i} = u_{i - 1} t + \frac{1}{2}a_{i} t^{2} $$
(A3)

where u i is the horizontal velocity of the solidified shell and its initial value, u 0, is set to zero.

The sum of h 0 and h i is defined as the new thickness of liquid film, h i+1, which is used as an initial condition for flux channel pressure coupled with the oscillation velocity at the next time step:

$$ h_{{i{ + }1}} = h_{0} + h_{i} $$
(A4)

The flux channel pressure equations are solved at each time step based on the thickness of liquid film evaluated at the previous step. Therefore, the dynamic pressure generated in the flux channel is a necessary condition for the thickness of the liquid-slag layer, which in turn changes the magnitude of channel pressure. Generally, the periodical variation of liquid film thickness has a certain time lag in relation to the mold oscillation. Figure 17 gives a flow chart of the whole procedure.

Fig. 17
figure 17

Flow chart of dynamic flux thickness calculation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Meng, X., Wang, N. et al. Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold. Metall Mater Trans B 48, 1230–1247 (2017). https://doi.org/10.1007/s11663-016-0880-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0880-x

Keywords

Navigation