Skip to main content
Log in

γ′-Strengthened Multicomponent CoNi-Based Wrought Superalloys With Improved Comprehensive Properties

  • Topical Collection: Processing and Applications of Superalloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to accelerate the adoption of γ′-strengthened CoNi-based wrought superalloys in engineering applications, two alloys that were previously designed using a framework combining data from a multicomponent diffusion-multiple and machine learning. In this study, we evaluated the comprehensive properties of these alloys, one with spherical γ′ morphology and the other with cuboidal, including the alloy density, phase transformation temperatures, microstructural stability, oxidation resistance and mechanical properties. The properties were discussed with respect to alloying effects and in regard to other CoNi-based and Ni-based wrought superalloys. The results show that the designed alloys have relatively low density, decent microstructural stability, good oxidation resistance and mechanical properties. This study will provide guidance for further design and optimization of γ′-strengthened CoNi-based wrought superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Science, 2006, vol. 312, pp. 90–91.

    Article  CAS  Google Scholar 

  2. A. Suzuki and T.M. Pollock: Acta Mater., 2008, vol. 56, pp. 1288–97.

    Article  CAS  Google Scholar 

  3. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken: Mater. Sci. Eng. A, 2012, vol. 550, pp. 333–41.

    Article  CAS  Google Scholar 

  4. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Superalloys, 2012, vol. 12, pp. 695–703.

    Article  Google Scholar 

  5. F. Xue, H.J. Zhou, and Q. Feng: JOM, 2014, vol. 66, pp. 2486–94.

    Article  CAS  Google Scholar 

  6. E.A. Lass, M.E. Williams, C.E. Campbell, K.-W. Moon, and U.R. Kattner: J. Phase Equilibria Diffus., 2014, vol. 35, pp. 711–23.

    Article  CAS  Google Scholar 

  7. E.A. Lass, R.D. Grist, and M.E. Williams: J. Phase Equilibria Diffus., 2016, vol. 37, pp. 387–401.

    Article  CAS  Google Scholar 

  8. S. Neumeier, L.P. Freund, and M. Göken: Scripta Mater., 2015, vol. 109, pp. 104–07.

    Article  CAS  Google Scholar 

  9. L.P. Freund, S. Giese, D. Schwimmer, H.W. Höppel, S. Neumeier, and M. Göken: J. Mater. Res., 2017, vol. 32, pp. 4475–82.

    Article  CAS  Google Scholar 

  10. M. Knop, P. Mulvey, F. Ismail, A. Radecka, K.M. Rahman, T.C. Lindley, B.A. Shollock, M.C. Hardy, M.P. Moody, and T.L. Martin: JOM, 2014, vol. 66, pp. 2495–2501.

    Article  CAS  Google Scholar 

  11. M. Knop, V.A. Vorontsov, M.C. Hardy and D. Dye, In MATEC Web of Conferences, (EDP Sciences: 2014), p. 18003.

  12. S.A.J. Forsik, A.O.P. Rosas, T. Wang, G.A. Colombo, N. Zhou, S.J. Kernion, and M.E. Epler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4058–69.

    Article  Google Scholar 

  13. S.A.J. Forsik, N. Zhou, T. Wang, A.O.P. Rosas, A.D. Dicus, G.A. Colombo, A.Ricci and M.E. Epler, In Superalloys 2020, ed. S. Tin, H. Mark, C. Justin, C. Jonathan, F. Qiang, M. John, O. Chris and S. Akane (Springer International Publishing: Cham, 2020), pp 847–56.

  14. X. Zhuang, S. Antonov, W. Li, Lu. Song, L. Li, and Q. Feng: Acta Mater., 2023, vol. 243, 118525.

    Article  CAS  Google Scholar 

  15. S. Meher, M.C. Carroll, T.M. Pollock, and L.J. Carroll: Mater. Design, 2018, vol. 140, pp. 249–56.

    Article  CAS  Google Scholar 

  16. Fu. Huadong, Y. Zhang, F. Xue, Yi. Zhang, Xu. Huan, and J. Xie: Metall. Mater. Trans. A, 2019, vol. 51A, pp. 299–308.

    Google Scholar 

  17. Lu. Wenjie, X. Luo, B. Huang, P. Li, and Y. Yang: Scripta Mater., 2022, vol. 212, 114576.

    Article  Google Scholar 

  18. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  19. Q. Gao, Y. Jiang, Z. Liu, H. Zhang, C. Jiang, X. Zhang, and H. Li: Mater. Sci. Eng. A, 2020, vol. 779, 139139.

    Article  CAS  Google Scholar 

  20. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Scripta Mater., 2010, vol. 63, pp. 1197–1200.

    Article  CAS  Google Scholar 

  21. F. Xue, M. Wang, and Q. Feng: Superalloys, 2012, vol. 12, pp. 813–21.

    Article  Google Scholar 

  22. A. Suzuki, H. Inui, and T.M. Pollock: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 345–68.

    Article  CAS  Google Scholar 

  23. E.A. Lass, D.J. Sauza, D.C. Dunand, and D.N. Seidman: Acta Mater., 2018, vol. 147, pp. 284–95.

    Article  CAS  Google Scholar 

  24. Haynes International, 2017.

  25. Special Metal Corporation, 2004.

  26. J.H. Chen, P.M. Rogers, and J.A. Little: Oxid. Met., 1997, vol. 47, pp. 381–410.

    Article  CAS  Google Scholar 

  27. X. Zhuang, L. Li, and Q. Feng: Superalloys, Springer, Cham, 2020, pp. 870–79.

    Google Scholar 

  28. B. Gao, L. Wang, Y. Liu, X. Song, S.Y. Yang, and A. Chiba: Corros. Sci., 2019, vol. 157, pp. 109–15.

    Article  CAS  Google Scholar 

  29. F.B. Ismail, V.A. Vorontsov, T.C. Lindley, M.C. Hardy, D. Dye, and B.A. Shollock: Corros. Sci., 2017, vol. 116, pp. 44–52.

    Article  CAS  Google Scholar 

  30. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, K. Kato, T. Kobayashi, and J. Fujioka: Superalloys, Springer, New York, 2008, pp. 53–61.

    Google Scholar 

  31. S. Lv, C. Jia, X. He, Z. Wan, X. Li, and Qu. Xuanhui: Materials, 2019, vol. 12, p. 3667.

    Article  CAS  Google Scholar 

  32. S. Bourguignon, Ph. Martin and Y. Honnorat, 1991.

  33. X. Zhuang, S. Antonov, L. Li, and Q. Feng: Scripta Mater., 2021, vol. 202, 114004.

    Article  CAS  Google Scholar 

  34. B.X. Cao, T. Yang, L. Fan, J.H. Luan, Z.B. Jiao, and C.T. Liu: Mater. Sci. Eng. A, 2020, vol. 797, 140020.

    Article  CAS  Google Scholar 

  35. Q. Shi, J. Huo, Y. Zheng, and Q. Feng: Mater. Sci. Eng. A, 2018, vol. 725, pp. 148–59.

    Article  CAS  Google Scholar 

  36. N. Birks, G.H. Meier, and F.S. Pettit: Introduction to the High Temperature Oxidation of Metals, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  37. M. Hasegawa: Treatise on Process Metallurgy, Elsevier, Amsterdam, 2014, pp. 507–16.

    Book  Google Scholar 

  38. F. Fan, H. Sun, D. Zhao, and J.B. Sha: Materials Science Forum, Trans Tech Publ, Zurich, 2013, pp. 754–59.

    Google Scholar 

  39. S.-J. Park, S.-M. Seo, Y.-S. Yoo, H.-W. Jeong, and HeeJin Jang: Materials, 2019, vol. 12, p. 2934.

    Article  CAS  Google Scholar 

  40. S. Antonov, M. Detrois, D. Isheim, D. Seidman, R.C. Helmink, R.L. Goetz, E. Sun, and S. Tin: Mater. Des., 2015, vol. 86, pp. 649–55.

    Article  CAS  Google Scholar 

  41. M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Acta Mater., 2015, vol. 82, pp. 530–39.

    Article  CAS  Google Scholar 

  42. L.P. Freund, O.M.D.M. Messé, and J.S. Barnard: Acta Mater., 2017, vol. 123, pp. 295–304.

    Article  CAS  Google Scholar 

  43. V.A. Vorontsov, T.P. McAuliffe, M.C. Hardy, D. Dye, and I. Bantounas: Acta Mater., 2022, vol. 232, 117936.

    Article  CAS  Google Scholar 

  44. Y. Yuan, Y.F. Gu, T. Osada, Z.H. Zhong, T. Yokokawa, and H. Harada: Scripta Mater., 2012, vol. 66, pp. 884–89.

    Article  CAS  Google Scholar 

  45. T.M. Smith, B.S. Good, T.P. Gabb, B.D. Esser, A.J. Egan, L.J. Evans, D.W. McComb, and M.J. Mills: Acta Mater., 2019, vol. 172, pp. 55–65.

    Article  CAS  Google Scholar 

  46. T.M. Smith, T.P. Gabb, K.N. Wertz, J. Stuckner, L.J. Evans, A.J. Egan and M.J. Mills, In Superalloys 2020, (Springer: 2020), pp 726–36.

Download references

Acknowledgments

The authors would like to acknowledge the financial supports provided by the National Natural Science Foundation of China (Grant Nos.: 92060113 and 52171095), the Science and Technology on Advanced High Temperature Structural Materials Laboratory (Grant No.: 6142903210207), the Guangdong Province Key Area R&D Program (Grant No.: 2019B010943001), the National Key Research and Development Program of China (Grant No.: 2017YFB0702902), and the Fundamental Research Funds for the Central Universities (Grant No.: FRF-GF-20-30B).

Conflict of interest

The authors declare no conflict of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longfei Li or Qiang Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, X., Antonov, S., Li, L. et al. γ′-Strengthened Multicomponent CoNi-Based Wrought Superalloys With Improved Comprehensive Properties. Metall Mater Trans A 54, 1671–1682 (2023). https://doi.org/10.1007/s11661-023-06959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-023-06959-4

Navigation