Skip to main content

Advertisement

Log in

Spark Plasma Sintering of PSZ-Ti Composites Using Ceramic-Coated Ti Powder to Suppress Sintering Reactions

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study aims to fabricate partially stabilized zirconia (PSZ)-titanium (Ti) composites to produce implants having ceramic and metallic characteristics. To fabricate such materials via powder metallurgy, sintering reactions must be suppressed. In this study, ceramic-coated Ti powder was used as a starting material to suppress Ti oxide formation. Yttria was coated on Ti powder using the sol-gel technique, the Ti powder was mixed with PSZ powder, and the mixed powders were sintered. From the results of optical microscopy and XRD analysis, dense PSZ-Ti composites containing the yttria phase were successfully fabricated without any reaction products. Hardness and bend tests revealed that the hardness and elastic modulus of the composites increased with the increase of PSZ content and agreed with the predicted values based on the rule of mixtures. Bend tests also revealed that the strength did not improve, as the brittle yttria phase preferentially fractured in the composites subjected to bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1]M. Ahlhelm, P. Gunther, U. Scheithauer, E. Schwarzer, A. Gunther, T. Slawik, T. Moritz, A. Michaelis, J. Eur. Ceram. Soc., 2016,Vol. 36, pp. 2883-2888.

    Article  CAS  Google Scholar 

  2. [2]R. Dittmer, M. Christian, J.F. Fischer, U. Hausch, J. Troetzschel, H. Specht, Biomed. Mater., 2017, Vol. 75, pp. 206-211.

    CAS  Google Scholar 

  3. [3]M. Akmal, M.S. Hussain, H. Ikram, T. Sattar, S. Jameel, K.Y. Kim, F.A. Khalid, J.W. Kim, Ceram. Int., 2016, Vol. 42, pp. 3855-3863.

    Article  CAS  Google Scholar 

  4. [4]S.N. Li, H.P. Xiong, N. Li, B.Q. Chen, C. Gao, W.J. Zou, H.S. Ren, Ceram. Int., 2017, Vol. 43, pp. 961-967.

    Article  CAS  Google Scholar 

  5. [5]N. Omidi, A.H. Jabbari, M. Sedighi, Powder. Metall., 2018, Vol. 61, pp. 417-427.

    Article  CAS  Google Scholar 

  6. [6]M. Sedighi, N. Omidi, A. Jabbari, Mech. Adv. Compos. Struct., 2017, Vol. 4, pp. 233-237.

    Google Scholar 

  7. [7]C. Han, Y. Li, X. Lian, L. Chen, N. Zhao, X. Zhu, Trans. Nonferrous Met. Soc. China, 2012, Vol. 22, pp. 1855-1859.

    Article  CAS  Google Scholar 

  8. [8]E. Fernandez-Garcia, C.F. Gutierrez-Gonzalez, A. Fernandez, R. Torrecillas, S. Lopez-Esteban, Ceram. Int., 2013, Vol. 39, pp. 6931-6936.

    Article  CAS  Google Scholar 

  9. [9]H. Tukamoto, Int. J. Mater. Sci. Appl., 2014, Vol. 3, pp. 260-267

    Google Scholar 

  10. [10]E. Fernandez-Garcia, X. Chen, C.F. Gutierrez-Gonzalez, A. Fernandez, S. Lopez-Estebanc, C. Aparicio, J. Dent., 2015, Vol. 43, pp. 1162-1174.

    Article  CAS  Google Scholar 

  11. [11]T. Fujii, K. Tohgo, H. Araki, K. Wakazono, M. Ishikura, Y. Shimamura, J. Solid Mech. Mater. Eng., 2010, Vol. 4, pp. 1699-1710.

    Article  Google Scholar 

  12. [12]K. Tohgo, T. Fujii, M. Harada, H. Isono, Y. Shimamura, Mat. Sci. Eng. A-Struct., 2015, Vol. 621, pp. 166-172.

    Article  CAS  Google Scholar 

  13. [13]T. Fujii, K. Tohgo, H. Isono, Y. Shimamura, Mat. Sci. Eng. A-Struct., 2017, Vol. 682, pp. 656-663.

    Article  CAS  Google Scholar 

  14. [14]Y. Fukui, T. Fujii, K. Tohgo, Y. Shimamura, Comp. Mater. Sci, 2014, Vol. 95, pp. 24-34.

    Article  Google Scholar 

  15. [15]T. Shinohara, T. Fujii, K. Tohgo, Y.Shimamura, Mater. Char., 2017, Vol. 132, pp. 230-238.

    Article  CAS  Google Scholar 

  16. [16]E. Fernandez-Garcia, C.F. Gutierrez-Gonzalez, P. Peretyagin, W. Solis, S. Lopez-Esteban, R. Torrecillas, A. Fernandez, Mat. Sci. Eng. A-Struct., 2015, Vol. 646, pp. 96-100.

    Article  CAS  Google Scholar 

  17. Japanese Industrial Standard, JIS R 1607, 2015.

  18. [18]K. Niihara, R. Morena, D.P.H. Hasselman, J. Mater. Sci. Lett., 1982, Vol. 1, pp. 13-16.

    Article  CAS  Google Scholar 

  19. [19]Z. Li, A. Ghosh, A.S. Kobayashi, R.C. Bradt, J. Amer. Ceram. Soc., 1989, Vol. 72, pp. 904-911.

    Article  CAS  Google Scholar 

  20. [20]L. Gan, Y.J. Park, L.L. Zhu, H.N. Kim, J.W. Ko, H.D. Kim, J. Eur. Ceram. Soc., 2018, Vol. 38, pp. 4064-4069.

    Article  CAS  Google Scholar 

  21. [21]B. Stawarczyk, M. Özcan, L. Hallmann, A. Ender, A. Mehl, C.H.F. Hämmerlet, Clin Oral Invest, 2013, Vol. 17, pp. 269–274.

    Article  Google Scholar 

  22. [22]F.P. Knudsen, J. Amer. Ceram. Soc., 1959, Vol. 42, pp. 376-387.

    Article  CAS  Google Scholar 

  23. [23]S.C. Carniglia, J. Amer. Ceram. Soc., 1965, Vol. 48, pp. 580-583.

    Article  CAS  Google Scholar 

  24. [24]W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley and Sons, New York, NY, 1976, p. 768.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Fujii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 29, 2020; accepted January 31, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Suzuki, M., Tohgo, K. et al. Spark Plasma Sintering of PSZ-Ti Composites Using Ceramic-Coated Ti Powder to Suppress Sintering Reactions. Metall Mater Trans A 52, 1443–1452 (2021). https://doi.org/10.1007/s11661-021-06177-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06177-w

Navigation