Spark Plasma Sintering of PSZ-Ti Composites Using Ceramic-Coated Ti Powder to Suppress Sintering Reactions

Abstract

This study aims to fabricate partially stabilized zirconia (PSZ)-titanium (Ti) composites to produce implants having ceramic and metallic characteristics. To fabricate such materials via powder metallurgy, sintering reactions must be suppressed. In this study, ceramic-coated Ti powder was used as a starting material to suppress Ti oxide formation. Yttria was coated on Ti powder using the sol-gel technique, the Ti powder was mixed with PSZ powder, and the mixed powders were sintered. From the results of optical microscopy and XRD analysis, dense PSZ-Ti composites containing the yttria phase were successfully fabricated without any reaction products. Hardness and bend tests revealed that the hardness and elastic modulus of the composites increased with the increase of PSZ content and agreed with the predicted values based on the rule of mixtures. Bend tests also revealed that the strength did not improve, as the brittle yttria phase preferentially fractured in the composites subjected to bending.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    [1]M. Ahlhelm, P. Gunther, U. Scheithauer, E. Schwarzer, A. Gunther, T. Slawik, T. Moritz, A. Michaelis, J. Eur. Ceram. Soc., 2016,Vol. 36, pp. 2883-2888.

    CAS  Article  Google Scholar 

  2. 2.

    [2]R. Dittmer, M. Christian, J.F. Fischer, U. Hausch, J. Troetzschel, H. Specht, Biomed. Mater., 2017, Vol. 75, pp. 206-211.

    CAS  Google Scholar 

  3. 3.

    [3]M. Akmal, M.S. Hussain, H. Ikram, T. Sattar, S. Jameel, K.Y. Kim, F.A. Khalid, J.W. Kim, Ceram. Int., 2016, Vol. 42, pp. 3855-3863.

    CAS  Article  Google Scholar 

  4. 4.

    [4]S.N. Li, H.P. Xiong, N. Li, B.Q. Chen, C. Gao, W.J. Zou, H.S. Ren, Ceram. Int., 2017, Vol. 43, pp. 961-967.

    CAS  Article  Google Scholar 

  5. 5.

    [5]N. Omidi, A.H. Jabbari, M. Sedighi, Powder. Metall., 2018, Vol. 61, pp. 417-427.

    CAS  Article  Google Scholar 

  6. 6.

    [6]M. Sedighi, N. Omidi, A. Jabbari, Mech. Adv. Compos. Struct., 2017, Vol. 4, pp. 233-237.

    Google Scholar 

  7. 7.

    [7]C. Han, Y. Li, X. Lian, L. Chen, N. Zhao, X. Zhu, Trans. Nonferrous Met. Soc. China, 2012, Vol. 22, pp. 1855-1859.

    CAS  Article  Google Scholar 

  8. 8.

    [8]E. Fernandez-Garcia, C.F. Gutierrez-Gonzalez, A. Fernandez, R. Torrecillas, S. Lopez-Esteban, Ceram. Int., 2013, Vol. 39, pp. 6931-6936.

    CAS  Article  Google Scholar 

  9. 9.

    [9]H. Tukamoto, Int. J. Mater. Sci. Appl., 2014, Vol. 3, pp. 260-267

    Google Scholar 

  10. 10.

    [10]E. Fernandez-Garcia, X. Chen, C.F. Gutierrez-Gonzalez, A. Fernandez, S. Lopez-Estebanc, C. Aparicio, J. Dent., 2015, Vol. 43, pp. 1162-1174.

    CAS  Article  Google Scholar 

  11. 11.

    [11]T. Fujii, K. Tohgo, H. Araki, K. Wakazono, M. Ishikura, Y. Shimamura, J. Solid Mech. Mater. Eng., 2010, Vol. 4, pp. 1699-1710.

    Article  Google Scholar 

  12. 12.

    [12]K. Tohgo, T. Fujii, M. Harada, H. Isono, Y. Shimamura, Mat. Sci. Eng. A-Struct., 2015, Vol. 621, pp. 166-172.

    CAS  Article  Google Scholar 

  13. 13.

    [13]T. Fujii, K. Tohgo, H. Isono, Y. Shimamura, Mat. Sci. Eng. A-Struct., 2017, Vol. 682, pp. 656-663.

    CAS  Article  Google Scholar 

  14. 14.

    [14]Y. Fukui, T. Fujii, K. Tohgo, Y. Shimamura, Comp. Mater. Sci, 2014, Vol. 95, pp. 24-34.

    Article  Google Scholar 

  15. 15.

    [15]T. Shinohara, T. Fujii, K. Tohgo, Y.Shimamura, Mater. Char., 2017, Vol. 132, pp. 230-238.

    CAS  Article  Google Scholar 

  16. 16.

    [16]E. Fernandez-Garcia, C.F. Gutierrez-Gonzalez, P. Peretyagin, W. Solis, S. Lopez-Esteban, R. Torrecillas, A. Fernandez, Mat. Sci. Eng. A-Struct., 2015, Vol. 646, pp. 96-100.

    CAS  Article  Google Scholar 

  17. 17.

    Japanese Industrial Standard, JIS R 1607, 2015.

  18. 18.

    [18]K. Niihara, R. Morena, D.P.H. Hasselman, J. Mater. Sci. Lett., 1982, Vol. 1, pp. 13-16.

    CAS  Article  Google Scholar 

  19. 19.

    [19]Z. Li, A. Ghosh, A.S. Kobayashi, R.C. Bradt, J. Amer. Ceram. Soc., 1989, Vol. 72, pp. 904-911.

    CAS  Article  Google Scholar 

  20. 20.

    [20]L. Gan, Y.J. Park, L.L. Zhu, H.N. Kim, J.W. Ko, H.D. Kim, J. Eur. Ceram. Soc., 2018, Vol. 38, pp. 4064-4069.

    CAS  Article  Google Scholar 

  21. 21.

    [21]B. Stawarczyk, M. Özcan, L. Hallmann, A. Ender, A. Mehl, C.H.F. Hämmerlet, Clin Oral Invest, 2013, Vol. 17, pp. 269–274.

    Article  Google Scholar 

  22. 22.

    [22]F.P. Knudsen, J. Amer. Ceram. Soc., 1959, Vol. 42, pp. 376-387.

    CAS  Article  Google Scholar 

  23. 23.

    [23]S.C. Carniglia, J. Amer. Ceram. Soc., 1965, Vol. 48, pp. 580-583.

    CAS  Article  Google Scholar 

  24. 24.

    [24]W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley and Sons, New York, NY, 1976, p. 768.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Fujii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 29, 2020; accepted January 31, 2021.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fujii, T., Suzuki, M., Tohgo, K. et al. Spark Plasma Sintering of PSZ-Ti Composites Using Ceramic-Coated Ti Powder to Suppress Sintering Reactions. Metall Mater Trans A (2021). https://doi.org/10.1007/s11661-021-06177-w

Download citation