Warm Deformation and Dynamic Strain Aging of a Nb-Cr Microalloyed Low-Carbon Steel

Abstract

Warm rolling can be a cost-effective technique to achieve an excellent combination of strength and deep drawing properties in low-carbon steels, as the formation of intergranular shear bands (SBs) induces a {111} recrystallizing texture. However, the formation of SBs can be significantly suppressed due to dynamic strain aging (DSA). Therefore, it is necessary to confirm the temperature where DSA occurs and further investigate its physical mechanism. In this study, compression tests were conducted on Nb-Cr modified low-carbon steels from 250 °C to 650 °C at two true strains of 0.43 and 0.92. The flow stress behavior was carefully analyzed, and the microstructure evolution was investigated by transmission electron microscope (TEM). With an increase in the deformation temperature, DSA occurred at temperatures between 250 °C and 450 °C, and an obviously serrated plastic flow was observed at 350 °C. The TEM results revealed planar dislocations at this stage, resulting from the interactions between the mobile dislocations and solute atoms or nanosized precipitates. When the temperature reached 450 °C and above, the DSA disappeared, the size of the dislocation cells increased, and the dynamic recovery led to the formation of subgrains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    S. Vervynckt, K. Verbeken, B. Lopez, and J. J. Jonas: Int. Mater. Rev., 2012, vol. 57(4) pp. 187-207.

    CAS  Article  Google Scholar 

  2. 2.

    D. Ravi Kumar: J. Mater. Process. Technol., 2002, vol. 20, pp. 31–41.

  3. 3.

    S.H. Han, S.H. Choi, J.K. Choi, H.G. Seong and I.B. Kim: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1686-1694.

    Article  Google Scholar 

  4. 4.

    J. Y. Kang, H.C. Lee and H.G. Seong: Mater. Sci. Eng. A, 2011, vol. 530, pp.183-190.

    CAS  Article  Google Scholar 

  5. 5.

    H.G. Seong, Y. S. Ahn and K. K. Chin: J. Kor. Inst. Met. & Mater., 2008, vol.46, pp. 713-724.

    Google Scholar 

  6. 6.

    Z. G. Wang, A. M. Zhao, Z. Z. Zhao and Y. J. Ye: J. Iron. Steel. Res. Int., 2013, vol. 20, pp. 61-68.

    Article  Google Scholar 

  7. 7.

    R. K. Ray and P. Ghosh: T. Indian. I. Metals., 2013, vol. 66, pp. 5-6.

    Article  Google Scholar 

  8. 8.

    P. Zhang, Y. H. Guo and Z. D. Wang: J. Iron. Steel. Res. Int., 2010, vol. 17, pp. 44-48.

    Google Scholar 

  9. 9.

    J. J. Jonas: J. Mater. Process. Tech., 2001, vol. 117, pp. 293-299.

    CAS  Article  Google Scholar 

  10. 10.

    M. R. Barnett: ISIJ Int., 1998, vol. 38, pp. 78-85.

    CAS  Article  Google Scholar 

  11. 11.

    A. O. Humphreys, D. S. Liu, M. R. Toroghinezhad and J. J. Jonas: ISIJ. Int., 2002, vol. 42, pp. 52-56.

    Article  Google Scholar 

  12. 12.

    S. Serajzadeh: Mater. Sci. Eng. A, 2004, vol. 371, pp. 318-323.

    Article  Google Scholar 

  13. 13.

    H.W. Zhou, F.M. Bai, Y. Lei, H.L. Wei, Y. Chen, G.S. Peng, and Y.Z. He: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1202–10.

  14. 14.

    S. A. Abdullah, N. Kumara and K. L. Murtya: Mater. Sci. Eng. A, 2018, vol. 729, pp.157-160.

    Article  Google Scholar 

  15. 15.

    V. Preeti V, R. G. Sudhakar and P. Chellapandi: Mater. Sci. Eng. A, 2015, vol. 621, pp. 39–51.

  16. 16.

    K. Gopinath, A.K. Gogia and S.V. Kamat: Acta. Metall., 2009, vol. 57, pp. 1243-1253.

    CAS  Google Scholar 

  17. 17.

    A. O. Humphreys, D. Liu and M. R. Toroghinejad: J. Mater. Sci. Technol., 2003, vol. 19, pp. 709-714.

    CAS  Article  Google Scholar 

  18. 18.

    M. R. Barnett and J.J.Jonas: ISIJ. Int., 1997, vol. 37, pp. 697-705.

    CAS  Article  Google Scholar 

  19. 19.

    P. Rodriguez, and S. Venkadesan: Solid. State. Phenom., 1995, vol. 42-43, pp. 257-266.

    Article  Google Scholar 

  20. 20.

    L. P. Kubin and Y. Estrin: Acta. metal. mater., 1990, vol. 38, pp. 697-708.

    CAS  Article  Google Scholar 

  21. 21.

    Y. F. Shen, P. J. Wang and Y. D. Liue: Mater. Sci. Eng. A, 2015, vol. 645, pp. 333–338.

    CAS  Article  Google Scholar 

  22. 22.

    F.J. Humphreys, P. S. Bate, P. j and Hurley: J. Microsc, 2001, vol. 201, pp. 50-58.

    CAS  Article  Google Scholar 

  23. 23.

    A. Godfrey: Scripta. Mater., 2004, vol. 50, pp. 1097-101.

    CAS  Article  Google Scholar 

  24. 24.

    H. Gao, Y. Huang and W. D. Nix: J. Mech. Phys. Solids., 1999, vol. 47, pp. 1239-1263.

    Article  Google Scholar 

  25. 25.

    L. P. Kubin and A. Mortensen: Scr. Mater., 2003, vol. 48, pp. 119–125.

    CAS  Article  Google Scholar 

  26. 26.

    A.V. D Beukel and U. F. Kocks: Acta. Metall., 1982, vol. 30, pp. 1027-1034.

    Article  Google Scholar 

  27. 27.

    V. GEROLD and H. P. KARNTHALER: Acta. Metall., 1989, vol. 37, pp. 2177-2183.

    CAS  Article  Google Scholar 

  28. 28.

    R. R. U. Queiroza, F. G. G. Cunhab and B. M. Gonzalezb: Mater. Sci. Eng. A, 2012, vol.543, pp. 84– 87.

    Article  Google Scholar 

  29. 29.

    E.V. Pereloma, I.B. Timokhina, J.J. Jonas and M.K. Miller: Scr. Mater., 2007, vol. 56, pp. 521-524.

    CAS  Article  Google Scholar 

  30. 30.

    H. Aboulfadl, J. Deges, P. Choi and D. Raabe: Acta. Metall., 2015, vol. 86 , pp. 34–42.

    CAS  Google Scholar 

  31. 31.

    G. Garces, M.A. Munõz-Morris, D.G. Morris, P. Perez, and P. Adeva: J. Mater. Sci., 2015, vol. 50, pp. 5769–76.

  32. 32.

    A.van den Beukel: Acta. Metall., 1980, vol. 28, pp. 965–69.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of china (Grant Nos. 51704132,51704131, and 51601174) and the Key Research and Development Program of Jiangxi Province (general project) (Grant Nos. 20161BBE50065 and 20192BBEL50016).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhigang Wang or Hongjin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 8, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, X., Yuan, Q. et al. Warm Deformation and Dynamic Strain Aging of a Nb-Cr Microalloyed Low-Carbon Steel. Metall Mater Trans A (2020). https://doi.org/10.1007/s11661-020-05855-5

Download citation