A Microstructurally Based Model for Recrystallization in Dual-Phase Steels

Abstract

Adjusting and predicting the ferrite recrystallization kinetics of cold-rolled Advanced High-Strength Steels during annealing is necessary to control their final microstructure and thus their mechanical properties. This study proposes a microstructurally based model for predicting the recrystallization kinetics of Dual-Phase steels that takes into account the effect of several physical parameters (chemical composition, temperature, cold rolling reduction ratio, and precipitation state). First, ternary Fe-C-Mn grades were used to validate the parameters of the model relative to the Mn content and to the reduction ratio. Second, the effect of other alloying elements (Si, Cr, Mo) was analyzed using recrystallization kinetics from the literature, before testing the model on two industrial Dual-Phase grades: a DP600 steel and a micro-alloyed DP1000 steel. The effect of the micro-alloyed elements (Nb,Ti) either in solid solution or as precipitates was detailed. Lastly, the model was used to build interaction maps between recrystallization and austenite formation during continuous heating with different heating rates.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    M. Ollat, V. Massardier, D. Fabregue, F. Keovilay, E. Buscarlet, M. Perez, , Metall. Mater. Trans. A 48 (2017) 4486–4499.

    CAS  Article  Google Scholar 

  2. 2.

    B. Zhu, M. Militzer, , Model. Simul. Mater. Sc. 20 (2012) 1–17.

    Article  Google Scholar 

  3. 3.

    B. Scholtes, R. Boulais-sinou, A. Settefrati, D. Pino, I. Poitrault, A. Montouchet, N. Bozzolo, M. Bernacki, , Comput. Mater. Sci. 122 (2016) 57–71.

    Article  Google Scholar 

  4. 4.

    R. Loge, M. Bernacki, H. Resk, L. Delannay, H. Digonnet, Y. Chastel, T. Coupez, , Phil. Mag. 88 (2008) 3691–3712.

    CAS  Article  Google Scholar 

  5. 5.

    M. Bernacki, H. Resk, T. Coupez, R. E. Logé, , Model. Simul. Mater. Sci. 17 (2009) 64006.

    Article  Google Scholar 

  6. 6.

    C. Zheng, D. Raabe, , Acta Mater. 61 (2013) 5504–5517.

    CAS  Article  Google Scholar 

  7. 7.

    M. S. Salehi, S. Serajzadeh, , Comput. Mater. Sci. 53 (2012) 145–152.

    Article  Google Scholar 

  8. 8.

    M. Kulakov, W. J. Poole, M. Militzer, , Metall. Mater. Trans. A 44A (2013) 3564–3576.

    Article  Google Scholar 

  9. 9.

    P. Li, J. Li, Q. Meng, W. Hu, D. Xu, , J. Alloys Compd. 578 (2013) 320–327.

    CAS  Article  Google Scholar 

  10. 10.

    D. Z. Yang, E. L. Brown, D. K. Matlock, G. Krauss, , Metall. Mater. Trans. A 16 (1985) 1385–1392.

    Article  Google Scholar 

  11. 11.

    J. Huang, W. J. Poole, M. Militzer, , Metall. Mater. Trans. A 35 (2004) 3363–3375.

    Article  Google Scholar 

  12. 12.

    C. Sinclair, C. Hutchinson, Y. Bréchet, , Metall. Mater. Trans. A 38 (2007) 821–830.

    Article  Google Scholar 

  13. 13.

    K. Andrews: J. Iron Steel Inst., 1965, pp. 721–727.

  14. 14.

    Gleeble: Thermomechanical simulator 3500. https://www.gleeble.com/products/gleeble-3500.html, 2019.

  15. 15.

    R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai, , Acta Mater. 47 (1999) 3475–3481.

    CAS  Article  Google Scholar 

  16. 16.

    P.R. Rios, G.S. da Fonseca: Grain Boundary Pinning by Particles, in: Materials Science Forum, Trans Tech Publications Ltd, 2010, vol. 638, pp. 3907–3912.

  17. 17.

    C. S. Smith, , Trans. Metall. 175 (1948) 15–51.

    Google Scholar 

  18. 18.

    M. Bellavoine, M. Dumont, J. Drillet, V. Hébert, P. Maugis, , Metall. Mater. Trans. A 49 (2018) 2865–2875.

    CAS  Article  Google Scholar 

  19. 19.

    A.T. Wicaksono, A Note on the Cahn Solute Drag Model, 2015.

  20. 20.

    V. Irmer, M. Feller-Kniepmeier, , J. Phys. Chem. Solids. 33 (1972) 2141–2148.

    CAS  Article  Google Scholar 

  21. 21.

    N. Oono, H. Nitta, Y. Iijima, , Mater. Trans. 44 (2003) 2078–2083.

    CAS  Article  Google Scholar 

  22. 22.

    Thermo-Calc Software, MOBFE 3 Steels/Fe-Alloys Mobility Database 3, 2017.

  23. 23.

    H. S. Zurob, D. Panahi, C. R. Hutchinson, Y. Brechet, G. R. Purdy, , Metall. Mater. Trans. A 44A (2012) 3456–3471.

    Google Scholar 

  24. 24.

    F. Danoix, X. Sauvage, D. Huin, L. Germain, M. Gouné, , Scr. Mater. 121 (2016) 61–65.

    CAS  Article  Google Scholar 

  25. 25.

    M. Perez, M. Dumont, D. Acevedo-Reyes, , Acta Mater. 57 (2009) 1318.

    CAS  Article  Google Scholar 

  26. 26.

    M. Perez, M. Dumont, D. Acevedo-Reyes, , Acta Mater. 56 (2008) 2119–2132.

    CAS  Article  Google Scholar 

  27. 27.

    R. Wagner R. Kampmann P.W. Voorhees, , Phase Trans. Mater. 5 (2005) 309–407.

    Article  Google Scholar 

  28. 28.

    A. Graux, S. Cazottes, D. De Castro, D. San Martín, C. Capdevila, J.M. Cabrera, S. Molas, S. Schreiber, D. Mirković, F. Danoix, M. Bugnet, D. Fabrègue, M. Perez, Materiala, 2019, vol. 5, p. 100233

  29. 29.

    Thermo-Calc Software, TCFE 8 Steels/Fe-alloys database version 8, 2017.

  30. 30.

    H. S. Zurob, C. R. Hutchinson, Y. Brechet, G. Purdy, , Acta Mater. 50 (2002) 3077–3094.

    Article  Google Scholar 

  31. 31.

    A. Chbihi, D. Barbier, L. Germain, A. Hazotte, M. Gouné, , J. Mater. Sci. 49 (2014) 3608–3621.

    CAS  Article  Google Scholar 

  32. 32.

    D. Barbier, L. Germain, A. Hazotte, M. Goune, A. Chbihi, , J. Mater. Sci. 50 (2015) 374–381.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Véronique Massardier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 30, 2020.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathevon, A., Massardier, V., Fabrègue, D. et al. A Microstructurally Based Model for Recrystallization in Dual-Phase Steels. Metall Mater Trans A 51, 4228–4241 (2020). https://doi.org/10.1007/s11661-020-05852-8

Download citation