Austenite Stability and Strain Hardening in C-Mn-Si Quenching and Partitioning Steels


Quenching and partitioning (Q&P) processing of third-generation advanced high strength steels generates multiphase microstructures containing metastable retained austenite. Deformation-induced martensitic transformation of retained austenite improves strength and ductility by increasing instantaneous strain hardening rates. This paper explores the influence of martensitic transformation and strain hardening on tensile performance. Tensile tests were performed on steels with nominally similar compositions and microstructures (11.3 to 12.6 vol. pct retained austenite and 16.7 to 23.4 vol. pct ferrite) at 980 and 1180 MPa ultimate tensile strength levels. For each steel, tensile performance was generally consistent along different orientations in the sheet relative to the rolling direction, but a greater amount of austenite transformation occurred during uniform elongation along the rolling direction. Neither the amount of retained austenite prior to straining nor the total amount of retained austenite transformed during straining could be directly correlated to tensile performance. It is proposed that stability of retained austenite, rather than austenite volume fraction, greatly influences strain hardening rate, and thus controls strength and ductility. If true, this suggests that tailoring austenite stability is critical for optimizing the forming response and crash performance of quenched and partitioned grades.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    A. Abraham: in Great Designs in STEEL Seminar, 2015.

  2. 2.

    Corporate Average Fuel Economy, Accessed 29 May 2019

  3. 3.

    D.K. Matlock and J.G. Speer: in International Conference on Micrstructure and Texture in Steels and Other Materials, A. Haldar, S. Suwas, and D. Bhattacharjee, eds., Springer, Jamshedpur, 2008, pp. 185–205.

  4. 4.

    K. Sugimoto, M. Kobayashi, and S. Hashimoto: Metall. Mater. Trans. A, 1992, vol. 23, pp. 3085–91.

    CAS  Google Scholar 

  5. 5.

    I. Tamura: Met. Sci., 2014, vol. 16, pp. 245–53.

    Google Scholar 

  6. 6.

    H.K.D.H. Bhadeshia: ISIJ Int., 2002, vol. 42, pp. 1059–60.

    CAS  Google Scholar 

  7. 7.

    H. Bhadeshia: Bull. Polish Acad. Sci. Tech. Sci., 2010, vol. 58, pp. 255–65.

    CAS  Google Scholar 

  8. 8.

    G.B. Olson and C. Morris: J. Less-Common Met., 1972, vol. 28, pp. 107–18.

    CAS  Google Scholar 

  9. 9.

    S.S. Hecker, M.G. Stout, K.P. Staudhammer, and J.L. Smith: Metall. Trans. A, 1982, vol. 13, pp. 619–26.

    CAS  Google Scholar 

  10. 10.

    L.E. Murr, K.P. Staudhammer, and S.S. Hecker: Metall. Trans. A, 1982, vol. 13, pp. 627–35.

    CAS  Google Scholar 

  11. 11.

    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    CAS  Google Scholar 

  12. 12.

    D. V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vol. 438–440, pp. 25–34.

    Google Scholar 

  13. 13.

    J.G. Speer, D. V. Edmonds, F.C. Rizzo, and D.K. Matlock: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 219–37.

    CAS  Google Scholar 

  14. 14.

    A.M. Streicher, J.G. Speer, D.K. Matlock, and B.C. De Cooman: International Conference on Advanced High-Strength Sheet Steels for Automotive Applications, Winter Park, Colorado, 2004, pp. 51–62

  15. 15.

    A.J. Clarke: Colorado School of Mines, 2006.

  16. 16.

    P.J. Gibbs: Colorado School of Mines, 2013.

  17. 17.

    A. Di Schino, C. Braccesi, F. Cianetti, P.E. Di Nunzio, S. Mengaroni, P.R. Calvillo, and J.M. Cabrera: Mater. Sci. Forum, 2016, vol. 879, pp. 430–35.

    Google Scholar 

  18. 18.

    J.G. Speer, E. De Moor, K.O. Findley, D.K. Matlock, B.C. De Cooman, and D. V. Edmonds: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3591–601.

    Google Scholar 

  19. 19.

    G.E. Dieter: Mechanical Metallurgy, 3rd edn., McGraw-Hill, New York, NY, 1961.

    Google Scholar 

  20. 20.

    M. Miles: ASM Handbook Formability Anal., 2006, vol. 14B, pp. 673–96.

  21. 21.

    S.T. Mileiko: J. Mater. Sci., 1969, vol. 4, pp. 974–7.

    CAS  Google Scholar 

  22. 22.

    R. Rana, P.J. Gibbs, E. De Moor, J.G. Speer, and D.K. Matlock: Steel Res. Int., 2015, vol. 86, pp. 1139–50.

    CAS  Google Scholar 

  23. 23.

    S. Kang, J.G. Speer, D. Krizan, D.K. Matlock, and E. De Moor: Mater. Des., 2016, vol. 97, pp. 138–46.

    CAS  Google Scholar 

  24. 24.

    K.O. Findley, J. Hidalgo, R.M. Huizenga, and M.J. Santofimia: Mater. Des., 2017, vol. 117, pp. 248–56.

    CAS  Google Scholar 

  25. 25.

    E. De Moor, S. Lacroix, A.J. Clarke, J. Penning, and J.G. Speer: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2586–95.

    CAS  Google Scholar 

  26. 26.

    P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–702.

    Google Scholar 

  27. 27.

    A. Andrade-Campos, F. Teixeira-Dias, U. Krupp, F. Barlat, E.F. Rauch, and J.J. Grácio: Strain, 2010, vol. 46, pp. 283–97.

    Google Scholar 

  28. 28.

    M. Mukherjee, S.B. Singh, and O.N. Mohanty, Materials Science and Technology, 2007, vol. 23, no. 3, pp. 338-46.

    CAS  Google Scholar 

  29. 29.

    J. Min, L.G. Hector, L. Zhang, J. Lin, J.E. Carsley, and L. Sun, Materials Science and Engineering A, 2016, vol. 673, pp. 423-29.

    CAS  Google Scholar 

  30. 30.

    D. De Knijf, C. Fojer, L. A.I. Kestens, and R. Petrov, Materials Science and Engineering A, 2015, vol. 638, pp. 219-27.

    Google Scholar 

  31. 31.

    A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D. V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

    CAS  Google Scholar 

  32. 32.

    D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, J.G. Speer, and E. De Moor: Acta Mater., 2014, vol. 90, pp. 417–30.

    Google Scholar 

  33. 33.

    D.T. Pierce, D.R. Coughlin, D.L. Williamson, K.D. Clarke, A.J. Clarke, and J.G. Speer: Microsc Microanal., 2015, vol. 21, pp. 2271–2.

    Google Scholar 

  34. 34.

    C. Chiriac, R. Sohmshetty, J. Balzer, T. Mueller, and J.D. Ju, In: IOP Confernce Series: Materials Science and Engineering, 2018, vol. 418, pp. 1–9.

  35. 35.

    K. Sugimoto, N. Usui, M. Kobayashi, and S. Hashimoto, ISIJ International, 1992, vol. 32, no. 12, pp. 1311-18.

    CAS  Google Scholar 

  36. 36.

    J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey, Materials Science and Engineering A, 2011, vol. 528, pp. 4516–21.

    Google Scholar 

  37. 37.

    Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama, and S. Takaki, ISIJ International, 2013, vol. 53, no. 7, pp. 1224-30.

    CAS  Google Scholar 

  38. 38.

    X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang, Scripta Materialia, 2013, vol. 68, pp. 321-24.

    CAS  Google Scholar 

  39. 39.

    J. Chiang, J.D. Boyd, and A.K. Pilkey, Mater. Sci. Eng. A, 2015, vol. 638, pp. 132-42.

    CAS  Google Scholar 

  40. 40.

    P.J. Gibbs, B.C. De Cooman, D.W. Brown, J.G. Schroth, M.J. Merwin, and D.K. Matlock, Materials Science and Engineering A, 2014, vol. 609, pp. 323-33.

    CAS  Google Scholar 

  41. 41.

    J.H. Ryu, D.I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, and D.W. Suh, Scripta Materialia, 2010, vol. 63, pp. 297-9.

    CAS  Google Scholar 

  42. 42.

    H. Zhao, W. Li, S. Zhou, and X. Jin, Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3943-55.

    Google Scholar 

  43. 43.

    X. Hu, K.S. Choi, X.Sun, Y. Ren, and Y. Wang, Metall. Mater. Trans. A, 2016, vol 47A, pp. 5733-49.

    Google Scholar 

  44. 44.

    C.Y. Wang, Y. Chang, J. Yang, W.Q. Cao, H. Dong, and Y. De Wang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 130–7.

    CAS  Google Scholar 

  45. 45.

    E. De Moor, J.G. Speer, D.K. Matlock, and D.N. Hanlon: Mater. Sci. Technol., 2011, pp. 568–79.

  46. 46.

    Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang, Mater. Sci. Eng. A, 2013, vol. 578, pp. 370-6.

    CAS  Google Scholar 

  47. 47.

    R. Blonde, E. Jimenez-Melero, L. Zhao, N. Schell, E. Bruck, S. van der Zwaag, and N.H. van Dijk, Mater. Sci. Eng. A, 2014, vol. 594, pp. 125-34.

    CAS  Google Scholar 

  48. 48.

    J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, Materials Characterization, 2015, vol. 106, pp. 108-11.

    CAS  Google Scholar 

  49. 49.

    J. Zhang, H. Ding, and R.D.K. Misra, Mater. Sci. Eng. A, 2015, vol. 636, pp. 53-9.

    CAS  Google Scholar 

  50. 50.

    H. Guo, A. Zhao, R. Ding, C. Zhi, and J. He, Materials Science and Technology, 2016, vol. 32, no. 15, pp. 1605-12.

    CAS  Google Scholar 

  51. 51.

    X.D. Tan, Y.B. Xu, X.L. Yang, Z.P. Hu, F. Peng, X.W. Ju, and D. Wu, Materials Characterization, 2015, vol. 104, pp. 23-30.

    CAS  Google Scholar 

  52. 52.

    X.D. Tan, H. He, W. Lu, L. Yang, B. Tang, J. Yan, Y. Xu, and D. Wu, Mater. Sci. Eng. A, 2020, vol. 771.

  53. 53.

    M. Mukherjee, O.N. Mohanty, S. Hashimoto. T. Hojo, and K. Sugimoto, ISIJ International, 2006, vol. 46(2), pp. 316–24.

  54. 54.

    A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, and R.J. Comstock, Metall. Mater. Trans. A., 2006, vol. 37A, pp. 1875-86.

    CAS  Google Scholar 

  55. 55.

    G.A. Thomas, J.G. Speer, and D.K. Matlock, Metall. Mater. Trans. A, 2011, vol. 42A. pp. 3652-9.

    Google Scholar 

  56. 56.

    L. Wang and W. Feng, in Advanced Steels: The Recent Scenario in Steel Science and Technology, eds. Y. Weng, H. Dong, and Y. Gan, 2011, pp. 255–58.

  57. 57.

    Y.J. Li, J. Kang, W.N. Zhang, D. Liu, X.H. Wang, G. Yuan, R.D.K. Misra, and G.D. Wang, Mater. Sci. Eng. A, 2018, vol. 710, pp. 181-91.

    CAS  Google Scholar 

  58. 58.

    ASTM Int. E8/E8M-16a,

  59. 59.

    ASTM Int. E975-13,

  60. 60.

    International Tables for X-Ray Crystallography, Physical and Chemical Tables, vol. 3, 1962.

  61. 61.

    T. Gnäupel-Herold and A. Creuziger, Mater. Sci. Eng. A, 2011, vol. 528, pp. 3594–600.

    Google Scholar 

  62. 62.

    M. Witte and C. Lesch, Mater. Charact., 2018, vol. 139, pp. 111–5.

    CAS  Google Scholar 

  63. 63.

    A. Arlazarov, M. Ollat, J.P. Masse, and M. Bouzat, Mater. Sci. Eng. A, 2016, vol. 661, pp. 79–86.

    CAS  Google Scholar 

  64. 64.

    A. Mostafapour, A. Ebrahimpour, and T. Saeid, International Journal of ISSI, 2016, vol. 13, no. 2, pp. 1-6.

    Google Scholar 

  65. 65.

    E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman, Acta Materialia, 2016, vol. 113, pp. 124-39.

    CAS  Google Scholar 

  66. 66.

    A. Navarro-Lopez, J. Hidalgo, J. Sietsma, and M.J. Santofimia, Materials Characterization, 2017, vol. 128, pp. 248-56.

    CAS  Google Scholar 

  67. 67.

    W. Song, T. Ingendahl, and W. Bleck: Acta Metall. Sin., 2014, vol. 27, pp. 546–55.

    CAS  Google Scholar 

  68. 68.

    D.M. Field and D.C. Van Aken: Metall. Mater. Trans. A, 2018, vol. 49, pp. 1152–66.

    Google Scholar 

  69. 69.

    B.C. De Cooman, S.J. Lee, S. Shin, E.J. Seo, and J.G. Speer: Metall. Mater. Trans. A, 2017, vol. 48, pp. 39–45.

    Google Scholar 

  70. 70.

    L. Xiao, Z. Fan, Z. Jinxiu, Z. Mingxing, K. Mokuang, and G. Zhenqi: Phys. Rev. B, 1995, vol. 52, pp. 9970–8.

    CAS  Google Scholar 

  71. 71.

    G.K. Bansal, V. Rajinikanth, C. Ghosh, V.C. Srivastava, S. Kundu, and S. G. Chowdhury, Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3501-14.

    Google Scholar 

  72. 72.

    G.A. Thomas, J.G. Speer, D.K. Matlock, G. Krauss, and R.E. Hackenberg, in International Conference on Martensitic Transformations, G.B. Olson, D.S. Lieberman, and A. Saxena, eds., 2008, pp. 595-600.

  73. 73.

    Z. Jiang, Z. Guan, and J. Lian, Mater. Sci. Eng. A, 1995, vol. 190, pp. 55-64.

    Google Scholar 

  74. 74.

    Y. Bergstrom, Y. Granbom, and D. Sterkenburg, Journal of Metallurgy, 2010, pp. 1–16.

  75. 75.

    W. Weib, T. van den Boogaard, E. Till, E. Atzema, M. Grunbaum, and A. Haufe: Enhanced Formability Assessment of AHSS Sheets, Luxembourg, 2014.

  76. 76.

    J.N. Hall and J.R. Fekete: Steels for Auto Bodies: A General Overview, Elsevier Ltd, Amsterdam, 2016.

  77. 77.

    D. Kitting, A. Ofenheimer, A.H. van den Boogaard, and P. Dietmaier: Key Eng. Mater., 2013, vol. 554–557, pp. 1252–64.

    Google Scholar 

  78. 78.

    E.H. Atzema: Formability of Auto Components, 2016.

  79. 79.

    J. Coryell, V. Savic, L. Hector, and S. Mishra: SAE Int.,, 2013.

    Article  Google Scholar 

  80. 80.

    C. Finfrock, C. Becker, T. Ballard, G. Thomas, K. Clarke, and A. Clarke, Contributed Papers from Materials Science & Technology, Portland, Oregon, 2019, pp. 1236-43.

Download references


The financial support of the Advanced Steel Processing and Products Research Center (ASPPRC) at the Colorado School of Mines, Golden, CO, USA, is gratefully acknowledged. CF and KD acknowledge support from the National Science Foundation division of Civil, Mechanical, and Manufacturing Innovation (NSF-CMMI) through Award No. 1752530. The authors would like to thank K.X. Steirer, who assisted with X-ray diffraction experiments.

Author information



Corresponding author

Correspondence to Christopher B. Finfrock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 3, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finfrock, C.B., Clarke, A.J., Thomas, G.A. et al. Austenite Stability and Strain Hardening in C-Mn-Si Quenching and Partitioning Steels. Metall Mater Trans A 51, 2025–2034 (2020).

Download citation