Mn3O4 and (ZnFe)OOH Composites for Supercapacitors with High Active Mass


A new colloidal method has been developed for the fabrication of Mn3O4-carbon nanotube (CNT) composites for positive electrodes of supercapacitors and areal capacitance of 5.04 F cm−2 has been achieved. In this method, chemical precipitation of Mn3O4 was performed in the presence of carbon nanotubes, dispersed using a tolonium chloride dye. An electrostatic heterocoagulation mechanism has been developed, which allowed for enhanced mixing of Mn3O4 and CNT, and resulted in enhanced electrochemical performance at high active mass of 36 mg cm−2. Testing results revealed changes in microstructure and oxidation state of Mn during cycling, which allowed for enhanced capacitance. In order to utilize the high capacitance of the positive Mn3O4-CNT electrodes in supercapacitor devices, advanced negative electrodes have been developed. (ZnFe)OOH-polypyrrole coated CNT electrodes with enhanced areal capacitance in a negative potential window have been fabricated. Asymmetric devices showed promising performance in a voltage window of 1.6 V.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    W. Wei, X. Cui, W. Chen and D.G. Ivey, Chemical society reviews 2011, vol. 40, pp. 1697-1721.

    CAS  Google Scholar 

  2. 2.

    S. Zhang and G.Z. Chen, Energy Materials 2008, vol. 3, pp. 186-200.

    CAS  Google Scholar 

  3. 3.

    Y. Zhang, X. Liu, S. Wang, L. Li and S. Dou, Advanced Energy Materials 2017, vol. 7, 1602543

    Google Scholar 

  4. 4.

    S. Yang, Y. Zhang, S. Wang, J. Shi, X. Liu and L. Li, Journal of Materials Chemistry A 2019, doi: 10.1039/C1039TA04516C.

    Article  Google Scholar 

  5. 5.

    R. Dong, Q. Ye, L. Kuang, X. Lu, Y. Zhang, X. Zhang, G. Tan, Y. Wen and F. Wang, ACS Applied Materials & Interfaces 2013, vol. 5, pp. 9508-9516.

    CAS  Google Scholar 

  6. 6.

    D. Dubal, D. Dhawale, R. Salunkhe, S. Pawar, V. Fulari and C. Lokhande, Journal of Alloys and Compounds 2009, vol. 484, pp. 218-221.

    CAS  Google Scholar 

  7. 7.

    Y.-F. Lee, K.-H. Chang, C.-C. Hu and Y.-H. Chu, Journal of Power Sources 2012, vol. 206, pp. 469-475.

    Google Scholar 

  8. 8.

    Z. Qi, A. Younis, D. Chu and S. Li, Nano-micro letters 2016, vol. 8, pp. 165-173.

    Google Scholar 

  9. 9.

    D.P. Shaik, P. Rosaiah, K.S. Ganesh, Y. Qiu and O. Hussain, Materials Science in Semiconductor Processing 2018, vol. 84, pp. 83-90.

    CAS  Google Scholar 

  10. 10.

    A.A. Yadav, Thin Solid Films 2016, vol. 608, pp. 88-96.

    CAS  Google Scholar 

  11. 11.

    J. Cao, Y. Wang, Y. Zhou, D. Jia, J.-H. Ouyang and L. Guo, Journal of Electroanalytical Chemistry 2012, vol. 682, pp. 23-28.

    CAS  Google Scholar 

  12. 12.

    S. Li, L.-L. Yu, R.-B. Li, J. Fan and J.-T. Zhao, Energy Storage Materials 2018, vol. 11, pp. 176-183.

    Google Scholar 

  13. 13.

    Y. Qiao, Q. Sun, J. Xi, H. Cui, Y. Tang and X. Wang, Journal of alloys and compounds 2016, vol. 660, pp. 416-422.

    CAS  Google Scholar 

  14. 14.

    Y. Qiao, Q. Sun, O. Sha, X. Zhang, Y. Tang, T. Shen, L. Kong and W. Gao, Materials Letters 2018, vol. 210, pp. 128-132.

    CAS  Google Scholar 

  15. 15.

    D. Yan, Y. Li, Y. Liu, R. Zhuo, Z. Wu, B. Geng, J. Wang, P. Ren, P. Yan and Z. Geng, Materials Letters 2014, vol. 117, pp. 62-65.

    CAS  Google Scholar 

  16. 16.

    Z. Gao, H. Wang, Z. Cao, T. Zhou, C. An and Y. Zhao, Energy Technology 2017, vol. 5, pp. 2275-2282.

    CAS  Google Scholar 

  17. 17.

    L. Liu, L. Su, J. Lang, B. Hu, S. Xu and X. Yan, Journal of Materials Chemistry A 2017, vol. 5, pp. 5523-5531.

    CAS  Google Scholar 

  18. 18.

    K. Subramani, D. Jeyakumar and M. Sathish, Physical Chemistry Chemical Physics 2014, vol. 16, pp. 4952-4961.

    CAS  Google Scholar 

  19. 19.

    X. Xiao, Y. Wang, G. Chen, L. Wang and Y. Wang, Journal of Alloys and Compounds 2017, vol. 703, pp. 163-173.

    CAS  Google Scholar 

  20. 20.

    J. Yao, S. Yao, F. Gao, L. Duan, M. Niu and J. Liu, Journal of Colloid and Interface Science 2018, vol. 511, pp. 434-439.

    CAS  Google Scholar 

  21. 21.

    J. Xu, X. Fan, Q. Xia, Z. Shao, B. Pei, Z. Yang, Z. Chen and W. Zhang, Journal of Alloys and Compounds 2016, vol. 685, pp. 949-956.

    CAS  Google Scholar 

  22. 22.

    M.S. Ata, J. Milne and I. Zhitomirsky, Journal of Colloid and Interface Science 2018, vol. 512, pp. 758-766.

    CAS  Google Scholar 

  23. 23.

    J. Milne and I. Zhitomirsky, Journal of Colloid and Interface Science 2018, vol. 515, pp. 50-57.

    CAS  Google Scholar 

  24. 24.

    Y. Zhou, L. Guo, W. Shi, X. Zou, B. Xiang and S. Xing, Materials 2018, vol. 11, 881.

    Google Scholar 

  25. 25.

    Y. Xiao, Y. Cao, Y. Gong, A. Zhang, J. Zhao, S. Fang, D. Jia and F. Li, Journal of Power Sources 2014, vol. 246, pp. 926-933.

    CAS  Google Scholar 

  26. 26.

    C. Liu, H. Song, C. Zhang, Y. Liu, C. Zhang, X. Nan and G. Cao, Nano Research 2015, vol. 8, pp. 3372-3383.

    CAS  Google Scholar 

  27. 27.

    N.S. Arul, J.I. Han and P.C. Chen, ChemElectroChem 2018, vol. 5, pp. 2747-2757.

    CAS  Google Scholar 

  28. 28.

    S. Krehula, S. Musić, Ž. Skoko and S. Popović, Journal of Alloys and Compounds 2006, vol. 420, pp. 260-268.

    CAS  Google Scholar 

  29. 29.

    Y. Zhu, K. Shi and I. Zhitomirsky, Journal of Materials Chemistry A 2014, vol. 2, pp. 14666-14673.

    CAS  Google Scholar 

  30. 30.

    C. Shi and I. Zhitomirsky, Nanoscale Research Letters 2010, vol. 5, 518.

    CAS  Google Scholar 

  31. 31.

    Y. Su and I. Zhitomirsky, Journal of Power Sources 2014, vol. 267, pp. 235-242.

    CAS  Google Scholar 

  32. 32.

    M. Kosmulski, Advances in Colloid and Interface Science 2016, vol. 238, pp. 1-61.

    CAS  Google Scholar 

  33. 33.

    B.E. Conway and W.G. Pell, Journal of Power Sources 2002, vol. 105, pp. 169-181.

    CAS  Google Scholar 

  34. 34.

    W.G. Pell and B.E. Conway, Journal of Electroanalytical Chemistry 2001, vol. 500, pp. 121-133.

    CAS  Google Scholar 

  35. 35.

    B.E. Conway, Journal of the Electrochemical Society 1991, vol. 138, pp. 1539-1548.

    CAS  Google Scholar 

  36. 36.

    L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets and Z. Guo, Electrochimica Acta 2013, vol. 87, pp. 801-808.

    CAS  Google Scholar 

  37. 37.

    M. Chigane and M. Ishikawa, Journal of the electrochemical society 2000, vol. 147, pp. 2246-2251.

    CAS  Google Scholar 

  38. 38.

    V. Di Castro and G. Polzonetti, Journal of Electron Spectroscopy and Related Phenomena 1989, vol. 48, pp. 117-123.

    Google Scholar 

  39. 39.

    J. Moon, M. Awano, H. Takagi and Y. Fujishiro, Journal of Materials Research 1999, vol. 14, pp. 4594-4601.

    CAS  Google Scholar 

  40. 40.

    S. Devaraj and N. Munichandraiah, Electrochemical and Solid-State Letters 2005, vol. 8, pp. A373-A377.

    CAS  Google Scholar 

  41. 41.

    Y. Su and I. Zhitomirsky, Advanced Engineering Materials 2014, vol. 16, pp. 760-766.

    CAS  Google Scholar 

  42. 42.

    Y. Wu, S. Liu, H. Wang, X. Wang, X. Zhang and G. Jin, Electrochimica Acta 2013, vol. 90, pp. 210-218.

    CAS  Google Scholar 

  43. 43.

    R. Attias, D. Sharon, A. Borenstein, D. Malka, O. Hana, S. Luski and D. Aurbach, Journal of The Electrochemical Society 2017, vol. 164, pp. A2231-A2237.

    CAS  Google Scholar 

  44. 44.

    Z. Zhang, K. Chi, F. Xiao and S. Wang, Journal of Materials Chemistry A 2015, vol. 3, pp. 12828-12835.

    CAS  Google Scholar 

  45. 45.

    M.R.C. Ismael and J.M.R. Carvalho, Minerals Engineering 2003, vol. 16, pp. 31-39.

    CAS  Google Scholar 

Download references


The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada for the financial support.

Author information



Corresponding author

Correspondence to I. Zhitomirsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 15, 2019.

Electronic supplementary material

Below is the link to the electronic supplementary material.


Supplementary material 1 (PDF 303 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poon, R., Liang, W. & Zhitomirsky, I. Mn3O4 and (ZnFe)OOH Composites for Supercapacitors with High Active Mass. Metall Mater Trans A 51, 855–862 (2020).

Download citation