Atomic Redistribution in a Fe-Cr System in the Course of Mechanical Alloying and Subsequent Annealing

Abstract

Evolution of the structure and atomic distribution in Fe1−xCrx (x = 0.2, 0.3, 0.4 and 0.48) samples in the course of Fe and Cr elemental powder mechanical alloying (MA), as well as during the subsequent isochronous (4 hours) annealing in the 400 °C to 700 °C temperature range, has been studied using 57Fe Mössbauer spectrometry and X-ray diffraction with a focus on the short-range order (SRO). It was established that MA proceeds in one stage for x ≤ 0.3 or three consecutive stages for x > 0.3. The single-stage process is characterized by preferential penetration of Cr into the Fe matrix, while the three-stage process comprises diffusion of Cr into Fe as in the previous case, formation of Cr- and Fe-rich areas, and formation of homogeneous α-Fe(Cr) solid solution. The change in the MA mechanism occurs as Fe is saturated with Cr and is caused by the inversion of the mixing energy sign from negative to positive. For all samples with x ≤ 0.3 annealed at all temperatures and for x > 0.3 annealed at 400 °C, only a small trend toward SRO was observed (SRO parameter < 0). The samples with x > 0.3 annealed at temperatures > 400 °C are subjected to thermally induced decomposition, which is accompanied by chromium segregations to the grain boundaries.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    R.L. Klueh and D.R. Harries: ASTM Stock Number: MONO3, 2001.

  2. 2.

    W. Xiong, M. Selleby, Q. Chen, J. Odqvist, Y. Du: Crit. Rev. Solid State Mater. Sci., 2010, vol. 35 pp. 125–52. 10.1080/10408431003788472.

    CAS  Article  Google Scholar 

  3. 3.

    L. Malerba, A. Caro, J. Wallenius: J. Nucl. Mater., 2008, vol. 382, pp. 112–25. https://doi.org/10.1016/j.jnucmat.2008.08.014.

    CAS  Article  Google Scholar 

  4. 4.

    I. Mirebeau, M. Hennion, G. Parette: Phys. Rev. Lett., 1984, vol. 53, pp. 687-90. 10.1103/PhysRevLett.53.687.

    CAS  Article  Google Scholar 

  5. 5.

    I. Mirebeau, G. Parette: Phys. Rev. B, 2010, vol. 82 pp. 104203-1–5. 10.1103/PhysRevB.82.104203.

    CAS  Article  Google Scholar 

  6. 6.

    A. Froideval, R. Iglesias, M. Samaras, S. Schhuppler, P. Nagel, D. Grolimund, M. Victoria, W. Hoffelner: Phys. Rev. Lett., 2007, vol. 99, pp. 237201-1–4. https://doi.org/10.1103/physrevlett.99.237201.

    CAS  Article  Google Scholar 

  7. 7.

    N.P. Filippova, V.A. Shabashov, A.L. Nikolaev: Phys. Met. Metallogr., 2000, vol. 90, pp. 145-152.

    Google Scholar 

  8. 8.

    M.Yu. Lavrentiev, R. Drautz, D. Nguyen-Manh, T.P.C. Klaver, S.L. Dudarev: Phys. Rev. B., 2007, vol. 75, 014208-1–12. 10.1103/PhysRevB.75.014208.

    CAS  Article  Google Scholar 

  9. 9.

    G. Bonny, R.C. Pasianot, L. Malerba, A. Caro, P. Olsson, M.Yu. Lavrentiev: J. Nucl. Mater., 2009, vol. 385 pp. 268-77. 10.1016/j.jnucmat.2008.12.001

    CAS  Article  Google Scholar 

  10. 10.

    G. Bonny, D. Terentiev, L. Malerba: J. Phase Equilib. Diff., 2010, vol. 31, pp. 439-44. 10.1007/s11669-010-9782-9

    CAS  Article  Google Scholar 

  11. 11.

    G. Bonny, R.C. Pasianot, D. Terentyev, L. Malerba: Phil. Mag., 2011, vol. 91, pp. 1724–46. 10.1080/14786435.2010.545780.

    CAS  Article  Google Scholar 

  12. 12.

    R. Idczak, R. Konieczny, J. Chojcan: J. Phys Chem. Solids, 2012, vol. 73 pp. 1095-98. 10.1016/j.jpcs.2012.05.010.

    CAS  Article  Google Scholar 

  13. 13.

    S.M. Dubiel, J. Zukrowski: Acta Mater., 2013, vol. 61, pp. 6207-12. 10.1016/j.actamat.2013.07.003.

    CAS  Article  Google Scholar 

  14. 14.

    S. M. Dubiel, J. Cieslak: Phys. Rev. B, 2011, vol. 83, pp. 180202-1–4. 10.1103/PhysRevB.83.180202.

    CAS  Article  Google Scholar 

  15. 15.

    T. Koyano, T. Takizawa, T. Fukunaya, U. Mizutani, S. Kamizura, E. Kita, A. Tasaki: J. Appl. Phys., 1993, vol. 73, pp. 429-33. 10.1063/1.353867.

    CAS  Article  Google Scholar 

  16. 16.

    T. Koyano, U. Mizutani, H. Okamoto: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1237-40. 10.1007/BF00291817.

    CAS  Article  Google Scholar 

  17. 17.

    M. Murugesan, H. Kuwano: IEEE Trans. Magn., 1999, vol. 35, pp. 3499-3501. 10.1109/20.800569.

    CAS  Article  Google Scholar 

  18. 18.

    A. Fnidiki, C. Lemoine, J. Teilet, M. Nogues: Physica B, 2005, vol. 363, pp. 271-81. 10.1016/j.physb.2005.03.036.

    CAS  Article  Google Scholar 

  19. 19.

    F.Z. Bentayeb, S. Alleg, B. Bouzabata, J.M. Greneche: JMMM, 2005, vol. 288, pp. 282-96. 10.1016/j.jmmm.2004.09.108.

    CAS  Article  Google Scholar 

  20. 20.

    A. Fnidiki, C. Lemoine, J. Teilet: Physica B, 2005, vol. 357, pp. 319-25. 10.1016/j.physb.2004.11.083.

    CAS  Article  Google Scholar 

  21. 21.

    P. Delcroix, G. Le Caër, B.F.O. Costa: J. Alloys Compd., 2007, vol. 434-435, pp. 584-86. 10.1016/j.jallcom.2006.08.085.

    CAS  Article  Google Scholar 

  22. 22.

    B. Pandey, M.A. Rao, H.C. Verma, S. Bhargava: Hyperfine Interact., 2006, vol. 169, pp. 1259-66. 10.1007/s10751-006-9434-y.

    CAS  Article  Google Scholar 

  23. 23.

    E.P. Yelsukov, D.A. Kolodkin, A.L. Ul’yanov, and V.E. Porsev: Colloid J., 2015, vol. 77, pp. 143–53. https://doi.org/10.1134/s1061933x15020076.

    CAS  Article  Google Scholar 

  24. 24.

    E.P. Elsukov, A.L. Ul’yanov, V.E. Porsev, D.A. Kolodkin, A.V. Zagainov, O.M. Nemtsova: Phys Met. Metallogr., 2018, vol. 119, pp. 153–60. 10.1134/S0031918X18030031.

    CAS  Article  Google Scholar 

  25. 25.

    E. P. Elsukov, A. L. Ulyanov, and V. E. Porsev: Bull. Russ Acad. Sci. Phys., 2017, vol. 81, pp. 867–70. 10.3103/S1062873817070097.

    Article  Google Scholar 

  26. 26.

    E.P. Yelsukov, A.L. Ul’yanov, D.A. Kolodkin, and V.E. Porsev: Colloid J., 2016, vol. 78, pp. 443–47. https://doi.org/10.1134/s1061933x16040049.

    CAS  Article  Google Scholar 

  27. 27.

    M. Ames, J. Markmann, R. Karos, A. Michels, A. Tschöpe, R. Birringer: Acta Mater., 2008, vol. 56, pp. 4255-66. 10.1016/j.actamat.2008.04.051.

    CAS  Article  Google Scholar 

  28. 28.

    R. Kirchheim: Acta Mater., 2002, vol. 50, pp. 413–19. 10.1016/S1359-6454(01)00338-X.

    CAS  Article  Google Scholar 

  29. 29.

    G.A. Dorofeev, A.N. Streletskii, I.V. Povstugar, A.V. Protasov, E.P. Elsukov: Colloid J., 2012, vol. 74, pp. 675–85. 10.1134/S1061933X12060051.

    CAS  Article  Google Scholar 

  30. 30.

    V.V. Ovchinnikov: Mössbauer Analysis of the Atomic and Magnetic Structure of Alloys. Cambridge International Science Publication Ltd., London, 2006.

  31. 31.

    E.V. Voronina, N.V. Ershov, A.L. Ageev, Yu.A. Babanov: Phys. Stat. Sol. B, 1990, vol. 160, pp. 625-34. 10.1002/pssb.2221600223.

    CAS  Article  Google Scholar 

  32. 32.

    G.K. Rane, U. Welzel, S.R. Meka, E.J. Mittemeijer: Acta Mater., 2013, vol. 61, pp. 4524-33. 10.1016/j.actamat.2013.04.021

    CAS  Article  Google Scholar 

  33. 33.

    Y.-L. Chen, Y.-H. Hu, C.-A. Hsieh, J.-W. Yeh, S.-K. Chen: J. Alloys Compd., 2009, vol. 481, pp. 768–75. 10.1016/j.jallcom.2009.03.087.

    CAS  Article  Google Scholar 

  34. 34.

    C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker Inc., New York, 2004, https://doi.org/10.1201/9780203020647.

  35. 35.

    P.J. Schilling, V. Palshin, R. C. Tittsworth, J. H. He, and E. Ma: Phys. Rev. B, 2003, vol. 68, pp. 224204-1–5. 10.1103/PhysRevB.68.224204

    CAS  Article  Google Scholar 

  36. 36.

    E. Ma: Prog. Mater. Sci., 2005, vol. 50, pp. 413–509. https://doi.org/10.1016/j.pmatsci.2004.07.001.

    CAS  Article  Google Scholar 

  37. 37.

    B.F.O. Costa, G. Le Caër, J.M. Loureiro, V.S. Amaral: J. Alloys Compd., 2006, vol. 424, pp. 131–140. https://doi.org/10.1016/j.jallcom.2005.12.070.

    CAS  Article  Google Scholar 

  38. 38.

    B.F.O. Costa, G. Le Caër, J.M. Loureiro: J. Alloys Compd., 2009, vol. 483, pp. 70–73. https://doi.org/10.1016/j.jallcom.2008.07.179

    CAS  Article  Google Scholar 

  39. 39.

    G.Y. Vélez and G.A. Pérez Alcázar: J. Alloys Compd., 2015, vol. 644, pp. 1009–12. http://dx.doi.org/10.1016/j.jallcom.2015.05.004.

  40. 40.

    G.K. Wertheim, V. Jaccarino, J.H. Wernick, D.N.E. Buchanan: Phys. Rev. Lett., 1964, vol. 12, pp. 24-27. https://doi.org/10.1103/physrevlett.12.24.

    Article  Google Scholar 

  41. 41.

    H. Kuwano, Y. Ishikawa, T. Yoshimura, Y. Hamaguchi: Hyperfine Interact., 1992, vol. 69, pp. 501-504. 10.1007/BF02401874.

    Article  Google Scholar 

  42. 42.

    H. Kuwano, Y. Nakamura, K. Ito, T. Yamada: Nuovo Cimento D, 1996, vol. 18, pp. 259-62. 10.1007/BF02458901.

    Article  Google Scholar 

  43. 43.

    J. Cieslak, S.M. Dubiel: J. Alloys Compd., 1998, vol. 269, pp. 208–18. 10.1016/S0925-8388(98)00258-8.

    CAS  Article  Google Scholar 

  44. 44.

    G.K. Wertheim: Mössbauer Effect: Principles and Application, Academic Press, New York, 1964.

    Google Scholar 

  45. 45.

    L. Trieb, G. Veith: Acta Metallurg., 1978, vol. 26, pp. 185-96.

    CAS  Article  Google Scholar 

  46. 46.

    L.R. Owen, H.Y. Playford, H.J. Stone, M.G. Tucker: Acta Mater., 2016, vol. 115, pp. 155-66.

    CAS  Article  Google Scholar 

  47. 47.

    J.M. Cowley: J. Appl. Phys., 1950, vol. 21, pp. 24-30. 10.1063/1.1699415.

    CAS  Article  Google Scholar 

  48. 48.

    J.M. Cowley: Phys. Rev., 1950, vol. 77, pp. 669-75. https://doi.org/10.1103/physrev.77.669.

    CAS  Article  Google Scholar 

  49. 49.

    O. Brümmer, G. Dräger, I. Mistol: Ann. Phys., 1972, vol. 28, pp. 135-40. 10.1002/andp.19724830205.

    Article  Google Scholar 

  50. 50.

    E.R. Reese, M. Bachhav, P. Wells, T. Yamamoto, G.R. Odette, E.A. Marquis: J. Nucl. Mater., 2018, vol. 500, pp. 192-98. 10.1016/j.jnucmat.2017.12.036.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The work has been carried out within the framework of the Ministry of Science and Higher Education of the Russian Federation (Project No. AAAA-A17-117022250038-7) using equipment of the Shared Use Centre “Centre of Physical and Physicochemical Methods of Analysis and Study of the Properties and Surface Characteristics of Nanostructures, Materials, and Products” UdmFRC UB RAS and partially supported by the UB RAS program (Project No. 18-10-2-21).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vitaly E. Porsev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 12, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porsev, V.E., Ulyanov, A.L. & Dorofeev, G.A. Atomic Redistribution in a Fe-Cr System in the Course of Mechanical Alloying and Subsequent Annealing. Metall Mater Trans A 50, 5977–5989 (2019). https://doi.org/10.1007/s11661-019-05461-0

Download citation