Effect of the Intensity of Melt Shearing on the As Cast Structure of Direct Chill Cast 2024 Aluminum Alloy


Intensive melt shearing was achieved by a stator–rotor high-shear unit and was used in the sump during direct chill (DC) casting process to investigate the influence of the rotation speed on the as cast structure of an aluminum alloy. It has been demonstrated that intensive melt shearing has a significant effect on achieving a uniform temperature distribution and obtaining a fine and uniform as cast structure. We also found that the intensity of the melt shearing plays an important role in the effect. As the rotation speed increases, the melt around the high-shear unit transformed from a liquid to a semisolid state. At a rotation speed of 3000 rpm, intensive melt shearing can only increase the nuclei through fragmentation in the region close to the solidification front by forced convection. When the rotation speed increases to 6000 rpm, intensive melt shearing can also evidently increase the number of effective nuclei, mainly by increased fragmentation in a large volume around the high-shear unit.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    R. Nadella, D. G. Eskin, Q. Du and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421-480.

    CAS  Article  Google Scholar 

  2. 2.

    Q. F. Zhu, Z.H. Zhao, Y.B. Zuo, X.J. Wang and J.Z. Cui: Int. J. Cast Met. Res, 2013, vol. 25, pp. 93-99.

    Article  Google Scholar 

  3. 3.

    Y.B. Zhang, J.C. Jie, L. Wu, Y. Fu, M. Li, Y.P. Lu and T.J. Li: Metall. Mater. Trans. A, 2013, vol. 45, pp. 2014-2022.

    Google Scholar 

  4. 4.

    D.G. Eskin: in Solidification Processing of Metallic Alloys Under External Fields, 1st ed. D.G. Eskin, and J. Mi, eds., Springer, Cham, 2018, pp 1–17.

  5. 5.

    J.Z. Cui, H.T. Zhang, L. Li, Y.B. Zuo and H. Nagaumi: in Solidification Processing of Metallic Alloys Under External Fields, 1st ed. D.G. Eskin, and J. Mi, eds., Springer, Cham, 2018, pp 119–51.

  6. 6.

    Y.B. Zuo, J.Z. Cui, Z.H. Zhao, H.T. Zhang, L. Li and Q.F. Zhu: J. Mater. Sci, 2012, vol. 47, pp. 5501-5508.

    CAS  Article  Google Scholar 

  7. 7.

    Z.Y. Fan, Y. Wang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook and T. Hashimoto: Acta Mater., 2015, vol. 84, pp. 292-304.

    CAS  Article  Google Scholar 

  8. 8.

    Z.Y. Fan, Y. Wang, M. Xia and S. Arumuganathar: Acta Mater., 2009, vol. 57, pp. 4891-4901.

    CAS  Article  Google Scholar 

  9. 9.

    Z.W. Shao, Q.C. Le, Z.Q. Zhang and J.Z. Cui: Mater. Des., 2011, vol. 32, pp. 4216-4224.

    CAS  Article  Google Scholar 

  10. 10.

    Z.Y. Fan, Y.B. Zuo and B. Jiang: Mater. Sci. Forum, 2011, vol. 690, pp. 141-144.

    CAS  Article  Google Scholar 

  11. 11.

    R. Haghayeghi, E. J. Zoqui, D.G. Eskin and H. Bahai: J. Alloys Compd., 2009, vol. 485, pp. 807-811.

    CAS  Article  Google Scholar 

  12. 12.

    Y.B. Zuo, H.T. Li, M. Xia, B. Jiang, G.M. Scamans and Z. Fan: Scr. Mater., 2011, vol. 64, pp. 209-212.

    CAS  Article  Google Scholar 

  13. 13.

    R. Haghayeghi and L. Nastac: Mater. Lett., 2011, vol. 65, pp. 3230-3233.

    CAS  Article  Google Scholar 

  14. 14.

    H. Men, B. Jiang and Z.Y. Fan: Acta Mater., 2010, vol. 58, pp. 6526-6534.

    CAS  Article  Google Scholar 

  15. 15.

    Y.B. Zuo, B. Jiang and Z.Y. Fan: Mater. Sci. Forum, 2011, vol. 690, pp. 137-140.

    CAS  Article  Google Scholar 

  16. 16.

    H.T. Li, P.Z. Zhao, R.D. Yang, J.B. Patel, X.F. Chen and Z.Y. Fan: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2481-2492.

    Article  Google Scholar 

  17. 17.

    S. Jones, A.K. Prasada Rao, J.B. Patel, G.M. Scamans, and Z.Y. Fan: in ICAA13 Pittsburgh, H. Weiland, A.D. Rollett, and W.A. Cassada, eds., Springer, Cham, 2016, pp. 91–96.

  18. 18.

    A.W. Nienow: Chem. Eng. Sci., 1997, vol. 52, pp. 2557-2565.

    CAS  Article  Google Scholar 

  19. 19.

    H.H. Mortensen, F. Innings and A. Håkansson: Chem. Eng. Res. Des., 2017, vol. 121, pp. 245-254.

    CAS  Article  Google Scholar 

  20. 20.

    A.T. Utomo, M. Baker and A.W. Pacek: Chem. Eng. Res. Des., 2008, vol. 86, pp. 1397-1409.

    CAS  Article  Google Scholar 

  21. 21.

    P.E. Smith and W.F. Gunsteren: Chem. Eng. Sci., 1993, vol. 215, pp. 315-318.

    CAS  Google Scholar 

  22. 22.

    Y.L. Sun, M.H. Sun, W.D. Cheng, C.X. Ma and F. Liu: Comput. Mater. Sci., 2007, vol. 38, pp. 737-740.

    CAS  Article  Google Scholar 

  23. 23.

    B.R. Munson, A.P. Rothmayer, T.H. Okiishi and W.W. Huebsch: Fundamentals of fluid mechanics. 7 th ed, Wiley, Hoboken, 2013.

    Google Scholar 

  24. 24.

    M.H. Sun, H.R. Geng, X.F. Bian and Y. Liu: Mater. Sci. Forum, 2000, vol. 331-337, pp. 337-342.

    Article  Google Scholar 

  25. 25.

    D.G. Eskin, Q. Du and L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1206-1212.

    CAS  Article  Google Scholar 

  26. 26.

    H. Vanja, M. Boštjan, K. Nejc and Š. Božidar: Appl Math Model, 2018, vol. 54, pp. 170-188.

    Article  Google Scholar 

  27. 27.

    I. Tzanakis, G. S. Lebon, D. G. Eskin and K. A. Pericleous: Ultrason. Sonochem., 2017, vol. 34, pp. 651-662.

    CAS  Article  Google Scholar 

  28. 28.

    X.J. Wang, H.T. Zhang, Y.B. Zuo, Z.H. Zhao, Q.F. Zhu and J.Z. Cui: Mater. Sci. Eng. A, 2008, 497, 416-420.

    Article  Google Scholar 

  29. 29.

    A. N. Turchin, M. Zuijderwijk, J. Pool, D. G. Eskin and L. Katgerman: Acta Mater., 2007, vol. 55, pp. 3795-3801.

    CAS  Article  Google Scholar 

  30. 30.

    D.G. Eskin: Physical Metallurgy of Direct Chill Casting of Aluminum Alloys. first ed, CRC Press, Boca Raton, 2008.

    Google Scholar 

  31. 31.

    Q. F. Zhu, Z. H. Zhao, J. Z. Cui, Y. B. Zuo and F. Qu: Acta Metall. Sin. 2008, 21, 205-210.

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (Grant Numbers 51674078 and 51374067). The authors are grateful to Mrs. Yiyao Kang and Mrs. Yue Lin for their help in the water simulation.

Author information



Corresponding author

Correspondence to Qingfeng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 24, 2019.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhu, Q., Zuo, Y. et al. Effect of the Intensity of Melt Shearing on the As Cast Structure of Direct Chill Cast 2024 Aluminum Alloy. Metall Mater Trans A 50, 5727–5733 (2019). https://doi.org/10.1007/s11661-019-05452-1

Download citation