Skip to main content
Log in

Effects of Cr Concentration on Cementite Coarsening in Ultrahigh Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultrahigh carbon steels (UHCS) containing 1 wt pct Cr (1Cr UHCS) were heat treated at 1073 K, 1173 K, or 1243 K (800 °C, 900 °C, or 970 °C) for durations of 5 minutes up to 24 hours to study cementite coarsening. Results were compared to a previous study on coarsening of a UHCS with 4 wt pct Cr (4Cr UHCS) and significantly different behavior was observed. In the heat-treated 1Cr UHCS, particles clustered in zones that were tens of microns near branches of the cementite network. The opposite trend was observed in the 4Cr UHCS, in which the regions within a few microns near the cementite network were entirely denuded of particles. Causes for differences in coarsening behavior in 1Cr and 4Cr UHCS are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. United States Patent, 3951697, 1976.

  2. B. Walser and O.D. Sherby: Metall. Trans. A, 1979, vol. 10, pp. 1461–71.

    Article  CAS  Google Scholar 

  3. D. Lesuer, C. Syn, and O. Sherby: in SAE Technical Paper 960314, SAE International Congress and Exposition, 1996.

  4. D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth, and O.D. Sherby: JOM, 1993, vol. 45, pp. 40–46.

    Article  Google Scholar 

  5. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  6. C. Wagner: Zeitschrift für Elektrochemie, 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  7. M. V. Speight: Acta Metall., 1968, vol. 16, pp. 133–35.

    Article  CAS  Google Scholar 

  8. A.J. Ardell: Acta Metall., 1972, vol. 20, pp. 601–09.

    Article  Google Scholar 

  9. B.A. Lindsley and A.R. Marder: Acta Mater., 1998, vol. 46, pp. 341–51.

    Article  CAS  Google Scholar 

  10. S.P. Rawal and J. Gurland: Metall. Trans. A, 1977, vol. 8, pp. 691–98.

    Article  CAS  Google Scholar 

  11. C.K. Syn, D.R. Lesuer, and O.D. Sherby: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1481–93.

    Article  CAS  Google Scholar 

  12. J.D. Verhoeven and E.D. Gibson: Metall. Mater. Trans. A, 1998, vol. 29, pp. 1181–89.

    Article  Google Scholar 

  13. Gene E. Lee, ed.: Rolls for the Metalworking Industries, Iron and Steel Society, Warrendale, PA, 2002.

    Google Scholar 

  14. M.D. Hecht, Y.N. Picard, and B.A. Webler: Metall. Mater. Trans. A 2017, 48, 2320–35.

    Article  Google Scholar 

  15. A.A. Vasilyev, S.F. Sokolov, N.G. Kolbasnikov, and D.F. Sokolov: Phys. Solid State, 2011, vol. 53, pp. 2194–2200.

    Article  CAS  Google Scholar 

  16. G.H. Zhang, J.Y. Chae, K.H. Kim, and D.W. Suh: Mater. Charact., 2013, vol. 81, pp. 56–67.

    Article  CAS  Google Scholar 

  17. P. Deb and M.C. Chaturvedi: Metallography, 1982, vol. 354, pp. 341–54.

    Article  Google Scholar 

  18. A.R. Marder and B.L. Bramfitt: Metall. Trans. A, 1975, vol. 6, pp. 2009–14.

    Article  CAS  Google Scholar 

  19. W.J. Nam and C.M. Bae: Scr. Mater., 1999, vol. 41, pp. 313–18.

    Article  CAS  Google Scholar 

  20. A.M. Cree, R.G. Faulkner, and A.T. Lyne: Mater. Sci. Technol., 1995, vol. 11, pp. 566–71.

    Article  CAS  Google Scholar 

  21. Z.Q. Lv, S.H. Sun, Z.H. Wang, M.G. Qv, P. Jiang, and W.T. Fu: Mater. Sci. Eng. A, 2008, vol. 489, pp. 107–12.

    Article  Google Scholar 

  22. R.V. Day and J. Barford: Nature, 1968, vol. 217, pp. 1145–46.

    Article  CAS  Google Scholar 

  23. F.S. Birks, N. Meier, G.H. Pettit: Introduction to the High Temperature Oxidation of Metals, 2nd edn., Cambridge University Press, Cambridge 2006.

    Book  Google Scholar 

  24. G.F. Voort and A. Roósz: Metallography, 1984, 17, 1–17.

    Article  CAS  Google Scholar 

  25. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: Nat. Methods, 2012, vol. 9, pp. 671–75.

    Article  CAS  Google Scholar 

  26. S.A. Saltikov: Proc. 2nd Int. Cong. Stereol., H. Elias, ed., Springer-Verlag New York Inc., Chicago, 1967, pp. 163–73.

  27. D.L. Sahagian and A.A. Proussevitch: J. Volcanol. Geotherm. Res., 1998, vol. 84, pp. 173–96.

    Article  CAS  Google Scholar 

  28. J. Krawczyk, R. Dziurka, and E. Rożniata: Metall. Foundry Eng., 2008, vol. 34, p. 125.

    Article  CAS  Google Scholar 

  29. M.J. Aziz: Defect Diffus. Forum, 1998, vol. 153–155, pp. 1–10.

    Google Scholar 

  30. F.S. Buffington and M. Cohen: J. Met., 1952, vol. 4, pp. 859–60.

    Google Scholar 

  31. T.L. Christiansen and M.A.J. Somers: Defect Diffus. Forum, 2010, vol. 297–301, pp. 1408–13.

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate Miller Centrifugal Casting for providing the mill roll parts for this study. This project was financed in part by a Grant from the Commonwealth of Pennsylvania Department of Community and Economic Development (DCED), Developed in PA Program (D2PA). Funding support is also acknowledged from the National Science Foundation, CMMI Award No. 1436064. The authors acknowledge use of the Materials Characterization Facility at Carnegie Mellon University supported by Grant MCF-677785 as well as helpful discussions with Professor Chris Pistorius of Carnegie Mellon University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan A. Webler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 24, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hecht, M.D., Picard, Y.N. & Webler, B.A. Effects of Cr Concentration on Cementite Coarsening in Ultrahigh Carbon Steel. Metall Mater Trans A 50, 4779–4790 (2019). https://doi.org/10.1007/s11661-019-05403-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05403-w

Navigation