Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint

Abstract

Based on a series of stress rupture tests at 620 °C under 110 to 170 MPa and at 650 °C under 80 to 110 MPa, the relationship between the stress and rupture time was obtained to evaluate the long-term performance of the welded joint (WJ). At 620 °C, the stress rupture occurred in the base metal of 9 pct Cr steel (9 pct Cr-BM), with the stress ranging from 130 to 170 MPa, yet the failure shifted to the heat-affected zone (HAZ) of 9 pct Cr steel (9 pct Cr-HAZ) with the stress ranging from 110 to 120 MPa. This failure behavior was observed at 650 °C with the turning point of 110 MPa. In particular, a ductile-to-brittle transition was determined when the rupture location shifted from 9 pct Cr-BM to 9 pct Cr-HAZ. Moreover, both the Laves phase adjacent to the M23C6 and the independent phases could be detected in the 9 pct Cr-HAZ after the stress rupture test, while only M23C6-type carbides could be found in the 9 pct Cr-BM. The appearance of the microhardness turning point and the formation of the Laves phase in the 9 pct Cr-HAZ are considered as the crucial factors resulting in the transition of the failure mode.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    1.X.Z. Zhang, X. Wu, J.R. Liu, J. Liu, and M.X. Yao: Mater. Sci. Eng. A, 2017, vol. 706, pp. 279–86.

    CAS  Google Scholar 

  2. 2.

    2.P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu: Mater. Des., 2014, vol. 54, pp. 874–79.

    CAS  Google Scholar 

  3. 3.

    3.I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.

    CAS  Google Scholar 

  4. 4.

    4.K. Mo, G. Lovicu, X. Chen, H.-M. Tung, J.B. Hansen, and J.F. Stubbins: J. Nucl. Mater., 2013, vol. 441, pp. 695–703.

    CAS  Google Scholar 

  5. 5.

    5.F.G. Lu, P. Liu, H.J. Ji, Y.M. Ding, X.J. Xu, and Y.L. Gao: Mater. Charact., 2014, vol. 92, pp. 149–58.

    CAS  Google Scholar 

  6. 6.

    6.R.L. Klueh and D.J. Alexander: J. Nucl. Mater., 1998, vols. 258–263, pp. 1269–74.

    Google Scholar 

  7. 7.

    7.A. Zieliński, J. Dobrzański, H. Purzyńska, and G. Golański: Arch. Metall. Mater., 2016, vol. 61, pp. 957–64.

    Google Scholar 

  8. 8.

    A.C. Pandey, M.M. Giri, and A. Mahapatra: Mater. Sci. Eng. A, 2016, vol. 664, pp. 58–74.

    CAS  Google Scholar 

  9. 9.

    9.X. Liu, Z.P. Cai, X.L. Deng, and F.G. Lu: J. Mater. Res., 2017, vol. 32, pp. 3117–27.

    CAS  Google Scholar 

  10. 10.

    10.K.H. Lee, J.Y. Suh, S.M. Hong, J.Y. Huh, and W.S. Jung: Mater. Charact., 2015, vol. 106, pp. 266–72.

    CAS  Google Scholar 

  11. 11.

    11.X. Liu, F.G. Lu, R.J. Yang, P. Wang, X.J. Xu, and X. Huo: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1434–40.

    CAS  Google Scholar 

  12. 12.

    12.J. Bugge, S. Kjær, and R. Blum: Energy, 2006, vol. 31, pp. 1437–45.

    CAS  Google Scholar 

  13. 13.

    13.A.K. Roy, M.H. Hasan, and J. Pal: Mater. Sci. Eng. A, 2009, vol. 520, pp. 184–88.

    Google Scholar 

  14. 14.

    14.X.Q. Song, L.Y. Tang, Z. Chen, and R.C. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4587–98.

    CAS  Google Scholar 

  15. 15.

    15.X.L. Deng, F.G. Lu, H.C. Cui, X.H. Tang, and Z.G. Li: Mater. Sci. Eng. A, 2016, vol. 651, pp. 1018–30.

    CAS  Google Scholar 

  16. 16.

    16.Q. Guo, F.G. Lu, H.C. Cui, R.J. Yang, X. Liu, and X.H. Tang: J. Mater. Process. Technol., 2015, vol. 226, pp. 125–33.

    CAS  Google Scholar 

  17. 17.

    17.C.D. Shao, F.G. Lu, X.F. Wang, Y.M. Ding, and Z.G. Li: J. Mater. Sci. Technol., 2016, vol. 33, pp. 1610–20.

    Google Scholar 

  18. 18.

    18.W. Liu, F.G. Lu, Y.H. Wei, Y.M. Ding, P. Wang, and X.H. Tang: Mater. Des., 2016, vol. 108, pp. 195–206.

    CAS  Google Scholar 

  19. 19.

    19.M. Taneike, K. Sawada, and F. Abe: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1255–62.

    CAS  Google Scholar 

  20. 20.

    20.Q.F. He, Y.F. Ye, and Y. Yang: J. Phase Equilib. Diff., 2017, vol. 38, pp. 416–25.

    CAS  Google Scholar 

  21. 21.

    21.L. Tan, D.T. Hoelzer, J.T. Busby, M.A. Sokolov, and R.L. Klueh: J. Nucl. Mater., 2012, vol. 422, pp. 45–50.

    CAS  Google Scholar 

  22. 22.

    22.L. Tan, Y. Yang, and J.T. Busby: J. Nucl. Mater., 2013, vol. 442, pp. S13–S17.

    CAS  Google Scholar 

  23. 23.

    23.S.S. Wang, D.L. Deng, L. Chang, and X.D. Hui: Mater. Des., 2013, vol. 50, pp. 174–80.

    CAS  Google Scholar 

  24. 24.

    24.H. Wang, W. Yan, S.V. Zwaag, Q.Q. Shi, W. Wang, K. Yang, and Y.Y. Shan: Acta Mater., 2017, vol. 134, pp. 143–54.

    CAS  Google Scholar 

  25. 25.

    25.L. Maddi, G.S. Deshmukh, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, K. Laha, and M.D. Mathew: Mater. Sci. Eng. A, 2016, vol. 668, pp. 215–23.

    CAS  Google Scholar 

  26. 26.

    26.S. Zhu, M. Yang, X.L. Song, S. Tang, and Z.D. Xiang: Mater. Charact., 2014, vol. 98, pp. 60–65.

    CAS  Google Scholar 

  27. 27.

    27.G. Dimmler, P. Weinert, E. Kozeschnik, and H. Cerjak: Mater. Charact., 2003, vol. 51, pp. 341–52.

    CAS  Google Scholar 

  28. 28.

    28.O. Prat, J. Garcia, D. Rojas, G. Suauthoff, and G. Inden: Intermetallics, 2013, vol. 32, pp. 362–72.

    CAS  Google Scholar 

  29. 29.

    29.Z.F. Peng, S. Liu, C. Yang, F.Y. Chen, and F.F. Peng: Acta Mater., 2018, vol. 143, pp. 141–55.

    CAS  Google Scholar 

  30. 30.

    30.S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, and K.B.S. Rao: Scripta Mater., 2004, vol. 51, pp. 59–63.

    CAS  Google Scholar 

  31. 31.

    31.Ö. Özgün, H.Ö. Gülsoy, R. Yilmaz, and F. Findik: J. Alloy. Compd., 2013, vol. 546, pp. 192–207.

    Google Scholar 

  32. 32.

    32.A. Mostafaei, Y. Behnamian, Y.L. Krimer, E.L. Stevens, J.L. Luo, and M. Chmielus: Mater. Des., 2016, vol. 111, pp. 482–91.

    CAS  Google Scholar 

  33. 33.

    33.L.M. Suave, J. Cormier, P. Villechaise, S. Aurélie, H. Zéline, and D. Bertheau: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2963–82.

    Google Scholar 

  34. 34.

    34.P.H. Wang, J.M. Chen, H.Y. Fu, S. Liu, H.W. Li, and Z.Y. Xu: J. Nucl. Mater., 2013, vol. 442, pp. S9–S12.

    CAS  Google Scholar 

  35. 35.

    35.I.J. Moore, M.G. Burke, and E.J. Palmiere: Acta Mater., 2016, vol. 119, pp. 157–66.

    CAS  Google Scholar 

  36. 36.

    36.Z.X. Xia, C. Zhang, H. Lan, Z.G. Yang, P.H. Wang, J.M. Chen, Z.Y. Xu, X.W. Li, and S. Liu: Mater. Sci. Eng. A, 2010, vol. 528, pp. 657–62.

    Google Scholar 

  37. 37.

    37.K. Ding, P. Wang, X. Liu, X.H. Li, B.G. Zhao, and Y.L. Gao: J. Mater. Eng. Perform., 2018, vol. 27 pp. 6027–39.

    CAS  Google Scholar 

  38. 38.

    38.Q. Guo, F.G. Lu, X. Liu, R.J. Yang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 638, pp. 240–50.

    CAS  Google Scholar 

  39. 39.

    39.Q.J. Wu, F.G. Lu, H.C. Cui, Y.M. Ding, X. Liu, and Y.L. Gao: Mater. Sci. Eng. A, 2014, vol. 615, pp. 98–106.

    CAS  Google Scholar 

  40. 40.

    40.H.G. Dong, P.X. Wang, X.H. Hao, S. Li, P. Li, Y.L. Gao, B.G. Zhao, and D.J. Yan: Mater. Lett., 2018, vol. 228, pp. 407–10.

    CAS  Google Scholar 

  41. 41.

    41.K. Ding, H.J. Ji, X. Liu, P. Wang, Q.L. Zhang, X.H. Li, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25 pp. 847–53.

    Google Scholar 

  42. 42.

    42.K. Ding, H.J. Ji, Q.L. Zhang, X. Liu, P. Wang, X.H. Li, L. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 839–46.

    Google Scholar 

  43. 43.

    43.Q.J. Wu, F.G. Lu, H.C. Cui, X. Liu, P. Wang, and Y.L. Gao: Mater. Lett., 2015, vol. 141, pp. 242–44.

    CAS  Google Scholar 

  44. 44.

    44.H.K. Ji, Y.J. Oh, I.S. Hwang, J.K. Dong, and J.T. Kim: J. Nucl. Mater., 2001, vol. 299, pp. 132–39.

    Google Scholar 

  45. 45.

    A. Laha, K.S. Chandrevathi, P. Parameswaran, K. BhanuSankaraRao, and S.L. Mannan: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 58–68.

    CAS  Google Scholar 

  46. 46.

    46.T. Watanabe, M. Tabuchi, M. Yamazaki, H. Hongo, and T. Tanabe: Int. J. Press. Vessel. Pip., 2006, vol. 83, pp. 63–71.

    CAS  Google Scholar 

  47. 47.

    47.Y.H. Wei, S.F. Qiao, F.G. Lu, and W. Liu: Mater. Des., 2016, vol. 97, pp. 268–78.

    CAS  Google Scholar 

  48. 48.

    48.P. Dahlman, F. Gunnberg, and M. Jacobson: J. Mater. Process. Technol., 2004, vol. 147, pp. 181–84.

    CAS  Google Scholar 

  49. 49.

    49.J. Hua, R. Shivpuri, X.M. Cheng, V. Bedekar, Y. Matsumoto, F. Hashimoto, and T.R. Watkins: Mater. Sci. Eng. A, 2005, vol. 394, pp. 238–48.

    Google Scholar 

  50. 50.

    50.W. Liu, X. Liu, F.G. Lu, X.H. Tang, H.C. Cui, and Y.L. Gao: Mater. Sci. Eng. A, 2015, vol. 644, pp. 337–46.

    CAS  Google Scholar 

  51. 51.

    51.P. Liu, F.G. Lu, X. Liu, H.J. Ji, and Y.L. Gao: J. Alloys Compd., 2014, vol. 584, pp. 430–37.

    CAS  Google Scholar 

  52. 52.

    52.A. Elrefaey, Y. Javadi, J.A. Francis, M.D. Callaghan, and A.J. Leonard: Int. J. Press. Vessel. Pip., 2018, vol. 165 pp. 20–28.

    CAS  Google Scholar 

  53. 53.

    53.C.G. Panait, W. Bendick, A. Fuchsmann, A.F. Gourgues-Lorenzon, and J. Besson: Int. J. Press. Vessel. Pip., 2010, vol. 87, pp. 326–35.

    CAS  Google Scholar 

  54. 54.

    54.H.G. Armaki, R. Chen, K. Maruyama, and M. Igarashi: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3084–94.

    Google Scholar 

  55. 55.

    55.X. Wang, X. Wang, H.J. Li, H.L. Wu, Y.Y. Ren, H.W. Liu, and H. Liu: Weld. World, 2017, vol. 61 pp. 231–39.

    CAS  Google Scholar 

  56. 56.

    56.J.S. Lee, H.G. Armaki, K. Maruyama, T. Muraki, and H. Asahi: Mater. Sci. Eng. A, 2006, vol. 428, pp. 270–75.

    Google Scholar 

  57. 57.

    57.D. Rojas, J. Garcia, O. Prat, L. Agudo, and C. Carrasco: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372–81.

    Google Scholar 

  58. 58.

    58.K. Shinozaki, L.I. De-Jun, H. Kuroki, H. Harada, and K. Ohishi: ISIJ Int., 2002, vol. 42, pp. 1578–84.

    CAS  Google Scholar 

  59. 59.

    59.Y.T. Xu, Y.H. Nie, M.J. Wang, W. Li, and X.J. Jin: Acta Mater., 2017, vol. 131, pp. 110–22.

    CAS  Google Scholar 

  60. 60.

    60.M.I. Isik, A. Kostka, and G. Enggeler: Acta Mater., 2014, vol. 81, pp. 230–40.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. U1760102), the financial support from the Program for Professor of Special Appointment (Eastern Scholar), the Shanghai Institutions of Higher Learning (Grant No. TP2014042), and the Shanghai Science and Technology Committee (Grant No. 13DZ1101502).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yulai Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 25, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, K., Qiao, S., Liu, S. et al. Failure Transition Mechanism of Stress Rupture Performance of the Inconel 625/9 Pct Cr Steel Dissimilar Welded Joint. Metall Mater Trans A 50, 4652–4664 (2019). https://doi.org/10.1007/s11661-019-05372-0

Download citation