Ratchetting in Cold-Drawn Pearlitic Steel Wires

Abstract

The microscopic mechanisms that accommodate uniaxial ratchetting in cold-drawn pearlitic steel wires were explored. A two-stage evolution of ratchetting strain as a function of cycle numbers was observed. The initial sudden increase of plastic strain leads to a rapid decomposition of cementite, followed by a constant ratchetting strain rate with critical role of decomposed carbon atoms played in blocking dislocation motion. The dislocation configuration transforms from low-density lines and tangles to high-density cells and sub-grains with increasing strain. A possible mechanism of cementite decomposition is discussed in terms of carbon-dislocation interactions and an unfavorable cementite surface-to-volume ratio.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    C. Borchers, R. Kirchheim: Prog. Mater. Sci., 2016, vol. 82, pp. 405-44.

    CAS  Google Scholar 

  2. 2.

    J. Embury, R. Fisher: Acta Metall., 1966, vol. 14, pp. 147-59.

    CAS  Google Scholar 

  3. 3.

    K. Maurer, D. Warrington: Philos. Mag., 1967, vol. 15, pp. 321-7.

    CAS  Google Scholar 

  4. 4.

    G. Langford: Metall. Mater. Trans. B. 1970, vol. 1, pp. 465-77.

    CAS  Google Scholar 

  5. 5.

    J. G. Sevillano: Mater. Sci. Eng., 1975, vol. 21, pp. 221-5.

    Google Scholar 

  6. 6.

    A. Inoue, T. Ogura, T. Masumoto: Metall. Trans. A. 1977, vol. 8, pp. 1689-95.

    Google Scholar 

  7. 7.

    V. Gridnev, V. Gavrilyuk, I. Y. Dekhtyar, Y. Y. Meshkov, P. Nizin, V. Prokopenko: Phys. Stat. Sol. (a). 1972, vol. 14, pp. 689-94.

    CAS  Google Scholar 

  8. 8.

    J. Languillaume, G. Kapelski, B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201-12.

    CAS  Google Scholar 

  9. 9.

    H. G. Read, W. T. R. Jr, K. Hono, T. Tarui: Scripta Mater., 1997, vol. 37, pp. 1221-30.

    CAS  Google Scholar 

  10. 10.

    X. Sauvage, J. Copreaux, F. Danoix, D. Blavette: Philos. Mag. A. 2000, vol. 80, pp. 781-96.

    CAS  Google Scholar 

  11. 11.

    V. G. Gavriljuk: Mater. Sci. Eng. A. 2003, vol. 345, pp. 81-9.

    Google Scholar 

  12. 12.

    T. Tarui, N. Maruyama, J. Takahashi, S. Nishida, H. Tashiro: Nippon Steel Tech. Rep., 2005, vol. 91, pp. 56–61.

    Google Scholar 

  13. 13.

    Z.-A. Lv, P. Jiang, Z.-h. Wang, W.-h. Zhang, S.-h. Sun, W.-t. Fu: Mater. Lett., 2008, vol. 62, pp. 2825-7.

    CAS  Google Scholar 

  14. 14.

    C. Borchers, R. Kirchheim, T. Al-Kassab, S. Goto: Mater. Sci. Eng. A. 2009, vol. 502, pp. 131-8.

    Google Scholar 

  15. 15.

    J. Takahashi, T. Tarui, K. Kawakami: Ultramicroscopy. 2009, vol. 109, pp. 193-9.

    CAS  Google Scholar 

  16. 16.

    J. Park, S.-D. Kim, S.-P. Hong, S.-I. Baik, D.-S. Ko, C. Y. Lee, D.-L. Lee, Y.-W. Kim: Mater. Sci. Eng. A. 2011, vol. 528, pp. 4947-52.

    CAS  Google Scholar 

  17. 17.

    X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-30.

    CAS  Google Scholar 

  18. 18.

    S. Goto, R. Kirchheim, T. Al-Kassab, C. Borchers: Trans. Nonferrous Met. Soc. China. 2007, vol. 17, pp. 1129-38.

    CAS  Google Scholar 

  19. 19.

    C. Borchers, T. Al-Kassab, S. Goto, R. Kirchheim: Mater. Sci. Eng. A. 2009, vol. 502, pp. 131-8.

    Google Scholar 

  20. 20.

    F. Fang, Y. Zhao, P. Liu, L. Zhou, X.-j. Hu, X. Zhou, Z.-h. Xie: Mater. Sci. Eng. A. 2014, vol. 608, pp. 11-5.

    CAS  Google Scholar 

  21. 21.

    C. Jiang, S. A. Maloy, S. G. Srinivasan: Scripta Mater., 2008, vol. 58, pp. 739-42.

    CAS  Google Scholar 

  22. 22.

    V. I. Voronin, I. F. Berger, Y. N. Gornostyrev, V. N. Urtsev, A. R. Kuznetsov, A. V. Shmakov: JETP Lett., 2010, vol. 91, pp. 143-6.

    CAS  Google Scholar 

  23. 23.

    M. H. Hong, W. T. Reynolds, T. Tarui, K. Hono: Metall. Mater. Trans. A. 1999, vol. 30, pp. 717-27.

    Google Scholar 

  24. 24.

    K. Hono, M. Ohnuma, M. Murayama, S. Nishida, A. Yoshie, T. Takahashi: Scripta Mater., 2001, vol. 44, pp. 977-83.

    CAS  Google Scholar 

  25. 25.

    N. Maruyama, T. Tarui, H. Tashiro: Scripta Mater., 2002, vol. 46, pp. 599-603.

    CAS  Google Scholar 

  26. 26.

    F. Danoix, D. Julien, X. Sauvage, J. Copreaux: Mater. Sci. Eng. A. 1998, vol. 250, pp. 8-13.

    Google Scholar 

  27. 27.

    M. Hong, K. Hono, W. Reynolds, T. Tarui: Metall. Mater. Trans. A. 1999, vol. 30, pp. 717-27.

    Google Scholar 

  28. 28.

    X. Sauvage, W. Lefebvre, C. Genevois, S. Ohsaki, K. Hono: Scripta Mater., 2009, vol. 60, pp. 1056-61.

    CAS  Google Scholar 

  29. 29.

    Y. J. Li, P. Choi, C. Borchers, Y. Z. Chen, S. Goto, D. Raabe, R. Kirchheim: Ultramicroscopy. 2011, vol. 111, pp. 628-32.

    CAS  Google Scholar 

  30. 30.

    V. Gavrilyuk, D. Gertsriken, Y. A. Polushkin, A. Fal’chenko: Fiz. Mekh. Mater. 1981, vol. 51, pp. 147-52.

    CAS  Google Scholar 

  31. 31.

    V. Gridnev, V. Gavrilyuk: Phys. Met.(USSR). 1982, vol. 4, pp. 531-51.

    Google Scholar 

  32. 32.

    W. J. Nam, C. M. Bae, S. J. Oh, S.-J. Kwon: Scripta Mater., 2000, vol. 42, pp. 457-63

    CAS  Google Scholar 

  33. 33.

    N. Min, W. Li, H. Li, X. Jin: J. Mater. Sci. Technol., 2010, vol. 26, pp. 776-82.

    CAS  Google Scholar 

  34. 34.

    J. Chakraborty, M. Ghosh, R. Ranjan, G. Das, D. Das, S. Chandra: Philos. Mag., 2013, vol. 93, pp. 4598-616.

    CAS  Google Scholar 

  35. 35.

    V. Gavriljuk: Mater. Sci. Eng. A. 2003, vol. 345, pp. 81-9.

    Google Scholar 

  36. 36.

    N. Ohno: J. Soc. Mater. Sci. Jpn. 1997, vol. 46, pp. 1-9.

    Google Scholar 

  37. 37.

    S. Bari, T. Hassan: Int. J. Plast., 2002, vol. 18, pp. 873-94.

    Google Scholar 

  38. 38.

    G. Kang: Int. J. Fatigue. 2008, vol. 30, pp. 1448-72.

    CAS  Google Scholar 

  39. 39.

    G. Kang, Y. Dong, H. Wang, Y. Liu, X. Cheng: Mater. Sci. Eng. A. 2010, vol. 527, pp. 5952-61.

    Google Scholar 

  40. 40.

    J. L. Chaboche: Int. J. Plast., 2008, vol. 24, pp. 1642-93.

    CAS  Google Scholar 

  41. 41.

    P. J. Armstrong, C. Frederick: A mathematical representation of the multiaxial Bauschinger effect, Berkeley: Nuclear Laboratories, 1966.

    Google Scholar 

  42. 42.

    K. Saï: Int. J. Plast., 2011, vol. 27, pp. 250-81.

    Google Scholar 

  43. 43.

    L. Bocher, P. Delobelle, P. Robinet, X. Feaugas: Int. J. Plast., 2001, vol. 17, pp. 1491-530.

    CAS  Google Scholar 

  44. 44.

    X. Feaugas, C. Gaudin: Int. J. Plast., 2004, vol. 20, pp. 643-62.

    CAS  Google Scholar 

  45. 45.

    C. Gaudin, X. Feaugas: Acta Mater., 2004, vol. 52, pp. 3097-110.

    CAS  Google Scholar 

  46. 46.

    J. Zhang, Y. Jiang: Int. J. Plast., 2005, vol. 21, pp. 2191-211.

    CAS  Google Scholar 

  47. 47.

    L. Taleb, A. Hauet: Int. J. Plast., 2009, vol. 25, pp. 1359-85.

    CAS  Google Scholar 

  48. 48.

    A. Ghosh, N. P. Gurao: Mater. Des., 2016, vol. 109, pp. 186-96.

    CAS  Google Scholar 

  49. 49.

    G. Kang, Y. Dong, Y. Liu, H. Wang, X. Cheng: Mater. Sci. Eng. A. 2011, vol. 528, pp. 5610-20.

    CAS  Google Scholar 

  50. 50.

    L. Xiang, L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, L. H. Dai: Mater. Sci. Eng. A. 2019, vol. 757, pp. 1-13.

    CAS  Google Scholar 

  51. 51.

    N. Ridley: Metall. Mater. Trans. A. 1984, vol. 15, pp. 1019-36.

    Google Scholar 

  52. 52.

    X. Hu, P. Van Houtte, M. Liebeherr, A. Walentek, M. Seefeldt, H. Vandekinderen: Acta Mater., 2006, vol. 54, pp. 1029-40.

    CAS  Google Scholar 

  53. 53.

    Y. J. Li, P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim: Acta Mater., 2011, vol. 59, pp. 3965-77.

    CAS  Google Scholar 

  54. 54.

    V. G. Gavrilyuk, V. G. Prokopenko, O. N. Razumov: Phys. Stat. Sol. (a). 1979, vol. 53, pp. 147-54.

    CAS  Google Scholar 

  55. 55.

    J. Wang, A. Misra: Curr. Opin. Solid State Mater. Sci., 2011, vol. 15, pp. 20-8.

    CAS  Google Scholar 

  56. 56.

    M. J. Demkowicz, L. Thilly: Acta Mater., 2011, vol. 59, pp. 7744-56.

    CAS  Google Scholar 

  57. 57.

    I. J. Beyerlein, M. J. Demkowicz, A. Misra, B. P. Uberuaga: Prog. Mater. Sci., 2015, vol. 74, pp. 125-210.

    CAS  Google Scholar 

  58. 58.

    M. Guziewski, S. P. Coleman, C. R. Weinberger: Acta Mater., 2018, vol. 144, pp. 656-65.

    CAS  Google Scholar 

  59. 59.

    F. X. Kayser, Y. Sumitomo: J. Phase Equilib., 1997, vol. 18, pp. 458-64.

    CAS  Google Scholar 

  60. 60.

    N. Medvedeva, A. Ivanovskii, L. Kar’kina: Phys. Met. Metall., 2003, vol. 96, pp. 452-6.

    Google Scholar 

  61. 61.

    L. Battezzati, M. Baricco, S. Curiotto: Acta Mater., 2005, vol. 53, pp. 1849-56.

    CAS  Google Scholar 

  62. 62.

    N. I. Medvedeva, L. E. Kar’kina, A. L. Ivanovskii: Phys. Met. Metall., 2006, vol. 101, pp. 440.

    Google Scholar 

  63. 63.

    B. Harris: Engineering composite materials. Institute of metals London, 1986.

    Google Scholar 

  64. 64.

    G. A. Nematollahi, J. von Pezold, J. Neugebauer, D. Raabe: Acta Mater., 2013, vol. 61, pp. 1773-84.

    CAS  Google Scholar 

  65. 65.

    F. Fang, Y. Zhao, P. Liu, L. Zhou, X.-j. Hu, X. Zhou, Z.-h. Xie: Mater. Sci. Eng. A. 2014, vol. 608, pp. 11-5.

    CAS  Google Scholar 

  66. 66.

    G. A. Nematollahi, B. Grabowski, D. Raabe, J. Neugebauer: Acta Mater., 2016, vol. 111, pp. 321-34.

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported financially by the National Key Research and Development Program of China (No. 2017YFB0702003), the NSFC (No. 11472287, No. 11790292, and No. 11572324), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB22040302 and XDB22040303), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJSSW-JSC011).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lanhong Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 7, 2018.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Xiang, L., Wang, Y. et al. Ratchetting in Cold-Drawn Pearlitic Steel Wires. Metall Mater Trans A 50, 4561–4568 (2019). https://doi.org/10.1007/s11661-019-05359-x

Download citation