Skip to main content

Advertisement

Log in

Growth Kinetics of Microarc Oxidation TiO2 Ceramic Film on Ti6Al4V Alloy in Tetraborate Electrolyte

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth kinetics of microarc oxidation TiO2 ceramic film on Ti6Al4V alloy in 0.1 M Na2B4O7·10H2O electrolyte were studied using scanning electron microscopy, transmission electron microscope, atomic force microscope, X-ray diffraction, and potentiodynamic polarization. It was found that the discharge sizes increased gradually from anodic oxidation, spark discharge, and microarc to arc discharges in the microarc oxidation process, and reached the maximum value without anymore increases. The microarc oxidation coating was mainly composed of nanocrystalline rutile TiO2 grains with very little amorphous titanium dioxide, and was made up of three layers, namely an inner dense thin layer, a middle dense thick layer, and a porous outer layer. The content of the rutile phase increased with the increasing discharge size, and when the discharge size reached a maximum, the increase rate decreased slightly. The surface roughness, Rv, and corrosion resistance of the coating increased with the increasing discharge size until the discharge size reached a maximum. It was concluded that the thickness of two dense layers depended on the discharge size, with any changes in it revealing the growth kinetics of the coating. A new method was developed to obtain the effective thickness of the coatings by measuring the thickness of the two dense layers. The results demonstrated that the growth kinetics of the two dense layers are linear during spark and microarc discharges, of which the growth trend is the same as that of the voltage. A linear relationship for the voltage and thickness of the two dense layers was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Liu, P. K. Chu, C. Ding: Mater. Sci. Eng. R, vol. 47(3–4), pp. 49-121 (2004).

    Article  Google Scholar 

  2. M. Popa, J. M. C. Moreno, C. Vasilescu, S. I. Drob, E. I. Neacsu, A. Coer, J. Hmeljak, G. Zerjav, and I. Milosev: Metall. Mater. Trans. A, 2014, vol. 45(7), pp. 3130-3143.

    Article  Google Scholar 

  3. Y. Wang, H. Yu, C. Chen, Z. Zhao: Mater. Design, 2015, vol. 85, pp. 640-652.

    Article  Google Scholar 

  4. R. Osman, M. Swain: Materials, 2015, vol. 8(3), pp. 932-958.

    Article  Google Scholar 

  5. N. Hallab: J. Clin. Rheumatol., 2001, vol. 7(4), pp. 215-8.

    Article  Google Scholar 

  6. S. Stojadinovic, R. Vasilic, J. Radic-Peric, M. Peric: Surf. Coating Technol., 2015, vol. 273, pp.1-11.

    Article  Google Scholar 

  7. T. Mi, B. Jiang, Liu Z, L. Fan: Electrochim Acta, 2014, vol.123, pp.369-377.

    Article  Google Scholar 

  8. R. F. Zhang, S. F. Zhang, Y. L. Shen, L.H. Zhang, T.Z. Liu, Y.Q. Zhang, S.B. Guo: Appl. Surf. Sci., 2012, vol. 258(17), pp.6602-6610.

    Article  Google Scholar 

  9. T. S. N. S. Narayanan, M. H. Lee: J. Alloy Compd., 2016, vol. 687, pp.720-732.

    Article  Google Scholar 

  10. D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, CH. Subrahmanyam, L. R. Krishna, K. P. Rao: Surf. Coat. Technol., 2013, vol. 222(6), pp. 31-37.

    Article  Google Scholar 

  11. H.X. Li, V.S. Rudnev, X.H. Zheng, T.P. Yarovaya, R.G. Song: J. Alloys Compd., vol. 462(1), pp. 99-102 (2008)

    Article  Google Scholar 

  12. M. S. Joni, A. Fattah-Alhosseini: J. Alloy Compd., 2016, vol. 661, pp. 237-244.

    Article  Google Scholar 

  13. S. Yagi, K. Kuwabara, Y. Fukuta, K. Kubota, E. Matsubara: Corros. Sci., 2013, vol. 73(13), pp. 188-195.

    Article  Google Scholar 

  14. M. S. Vasil’Eva, V. S. Rudnev, L. M. Tyrina, I. Lukiyanchuk, N. B. Kondrikov, Pavel S Gordienko: Russ. J. Appl. Chem., 2002, vol. 75(4), pp. 569-572.

    Google Scholar 

  15. V. S. Rudnev, M. S. Vasilyeva, N. B. Kondrikov, L.M. Tyrina: Appl. Surf. Sci., 2005, vol. 252(5), pp. 1211-1220.

    Article  Google Scholar 

  16. V. S. Rudnev, T. P. Yarovaya, V. S. Egorkin, S. Sinebryukhov, S. V. Gnedenkov: Russ. J. Appl. Chem., 2010, vol. 83(4), pp. 664-670.

    Article  Google Scholar 

  17. F.C. Walsh, C.T.J. Low, R.J.K. Wood, K.T. Stevens, J. Archer, A.R. Poeton, A. Ryder: Trans. Inst. Met. Finish, 2009, vol. 87(3), pp. 122-135.

    Article  Google Scholar 

  18. J.M. Albella, I. Montero, J.M. Martinez-Duart: J. Electrochem Soc., vol. 131(5), pp. 1101-1104 (1984).

    Article  Google Scholar 

  19. X. P. Zhang, S. M. Xiong, Q. Xu, B. Liu: Mater. Prot., 2004, vol. 37(8), pp. 19-20.

    Google Scholar 

  20. G. Sundararajan, L. R. Krishna: Surf. Coat. Technol., 2003, vol. 167(2), pp. 269-277.

    Article  Google Scholar 

  21. E. Erfanifar, M. Aliofkhazraei, H. F. Nabavi, H. Sharifi, A. S. R. Aghdam: Mater. Chem. Phys., 2017, vol. 185, pp. 162-175.

    Article  Google Scholar 

  22. G. B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade: Journal of Magnesium and Alloys, 2017, vol. 5(1), pp. 74-132.

    Article  Google Scholar 

  23. L. Chang: J. Alloys Compd., vol. 468(1-2), pp. 462-465 (2009).

    Article  Google Scholar 

  24. T. H. Teh, A. Berkani, S. Mato, P. Skeldon, G. E. Thompson, H. Habazaki, K. Shimizu: Corros. Sci., 2003, vol. 45(12), pp. 2757-2768.

    Article  Google Scholar 

  25. X. Jiang, C. Pan: Handbook of Nanoceramic and Nanocomposite Coatings and Materials. Elsevier, Amsterdam, 2015, pp. 257-276.

    Book  Google Scholar 

  26. J. Zhao, X. Wang, R. Chen, L. Li: Solid State Commun., 2005, vol. 134(10), pp. 705-710.

    Article  Google Scholar 

  27. M. Sowa, J. Worek, G. Dercz, D. Korotin, A. I. Kukharenko, E. Kurmaev, S. O. Cholakh, M. Basiaga, W. Simka: Electrochimica Acta, 2016, vol. 198, pp. 91-103.

    Article  Google Scholar 

  28. Y. Cheng, J. Cao, M. Mao, H. Xie, P. Skeldon: Surf. Coating Technol., 2016, vol. 291, pp. 239-249.

    Article  Google Scholar 

  29. Y. Leng: Materials Characterization: Introduction to Microscopic and Spectroscopic Methods. Wiley, New York, 2010.

    Google Scholar 

  30. M. Stern, A.L. Geary (1957) J. Electrochem. Soc., 104(1), 56

    Article  Google Scholar 

  31. G. C. Wood, C. Pearson: Corros. Sci., 1967, vol. 7(2), pp. 119-125.

    Article  Google Scholar 

  32. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey: Surf. Coat. Technol., 1999, 122(2-3), 73-93.

    Article  Google Scholar 

  33. X. Jiang, A. Shi, Y. Wang, Y. Li, C. Pan: Nanoscale, 2011, vol. 3(9), pp. 3573-3577.

    Article  Google Scholar 

  34. A. Fattah-Alhosseini, M. K. Keshavarz, M. Molaei, and S. O. Gashti: Metall. Mater. Trans. A, 2018, vol. 49(10), pp. 4966-4979.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keqin Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, D., Feng, K. & Yue, H. Growth Kinetics of Microarc Oxidation TiO2 Ceramic Film on Ti6Al4V Alloy in Tetraborate Electrolyte. Metall Mater Trans A 50, 2507–2518 (2019). https://doi.org/10.1007/s11661-019-05185-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05185-1

Navigation