Skip to main content
Log in

Fast Isothermal Solidification During Transient Liquid Phase Bonding of a Nickel Alloy Using Pure Copper Filler Metal: Solubility vs Diffusivity

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This investigation aims at understanding the underlying fundamentals of the isothermal solidification phenomenon during the transient liquid phase (TLP) bonding process. The isothermal solidification is governed by solid-state diffusion of the melting point depressant (MPD) into the base material, which, in turn, is controlled by both kinetic and thermodynamic parameters; however, the latter factor is generally ignored. In this work, the competition between kinetics and thermodynamics of diffusion were considered in TLP bonding of a nickel alloy, Monel 400, using two distinct filler metals including pure copper (Cu) and Ni-Si-B filler metal. The joint generated by Ni-Si-B filler metal exhibited two key features including the presence of eutectic-type solidification products, an indication of incomplete isothermal solidification, and the presence of liquated grain boundaries in the substrate. However, the joint generated using pure Cu filler metal exhibited neither liquated grain boundaries nor precipitates in the diffusion-affected zone (DAZ). Interestingly, a fast isothermal solidification was observed when bonding using Cu filler metal. Despite the lower diffusivity of Cu, as a substitutional MPD in Ni-base substrate, compared to that of B, as an interstitial MPD, its higher solid solubility in the substrate provides a larger thermodynamic driving force for diffusion-induced isothermal solidification. Moreover, due to the high partitioning ratio of Cu in the Ni-base substrate and, hence, the lower difference between MPD solubility in liquid and solid phases, the required number of MPD atoms that should diffuse from the liquid phase into the base metal (BM) to complete isothermal solidification is much lower than that of B-containing filler metals. Therefore, both diffusivity and solubility of the MPD element should be considered in filler metal selection for achieving a fast isothermal solidification during TLP bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kapoor, Ö.N. Doğan, C.S. Carney, R.V. Saranam, P. McNeff, and B.K. Paul: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3343–56.

    Article  Google Scholar 

  2. O.A. Ojo: J. Mater. Sci., 2012, vol. 47, pp. 1598–1602.

    Article  Google Scholar 

  3. O.A. Idowu, O.A. Ojo, and M.C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787–96.

    Article  Google Scholar 

  4. N.C. Sheng, J.D. Liu, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1793–1804.

    Article  Google Scholar 

  5. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Compd., 2013, vol. 563, pp. 143–49.

    Article  Google Scholar 

  6. D.S. Duvall: Weld. J., 1974, vol. 43, pp. 203–14.

    Google Scholar 

  7. W.D. MacDonald and T.W. Eagar: Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  Google Scholar 

  8. Y. Zhou, W.F. Gale, and T.H. North: Int. Mater. Rev., 1995, vol. 40, pp. 181–96.

    Article  Google Scholar 

  9. W.F. Gale and D.A. Butts: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 283–300.

    Article  Google Scholar 

  10. C.W. Sinclair: J. Phase Equilibria, 1999, vol. 20, p. 361.

    Article  Google Scholar 

  11. M. Khakian, S. Nategh, and S. Mirdamadi: J. Alloy. Compd., 2015, vol. 653, pp. 386–94.

    Article  Google Scholar 

  12. M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher: Mater. Sci. Eng. A, 2007, vol. 447, pp. 125–33.

    Article  Google Scholar 

  13. N.P. Wikstrom, A.T. Egbewande, and O.A. Ojo: J. Alloy Compd., 2008, vol. 460, pp. 379–85.

    Article  Google Scholar 

  14. A. Ghoneim and O.A. Ojo: Mater. Charact., 2011, vol. 62, pp. 1–7.

    Article  Google Scholar 

  15. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Can. Metall. Q., 2014, vol. 53, pp. 38–46.

    Article  Google Scholar 

  16. O.A. Ojo, N.L. Richards, and M.C. Chaturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 532–40.

    Article  Google Scholar 

  17. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy Compd., 2009, vol. 469, pp. 270–75.

    Article  Google Scholar 

  18. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Mater. Sci. Technol., 2013, vol. 29, pp. 980–84.

    Article  Google Scholar 

  19. O.A. Ojo, N.L. Richards, and M.C. Charturvedi: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 209–20.

    Article  Google Scholar 

  20. G.O. Cook and C.D. Sorensen: J. Mater. Sci., 2011, vol. 46, pp. 5305–23.

    Article  Google Scholar 

  21. M. Pouranvari, A. Ekrami, and A.H. Kokabi: J. Alloy. Comp., 2008, Vol. 461, pp. 641–47.

    Article  Google Scholar 

  22. F. Jalilian, M. Jahazi, and R.A.L. Drew: Mater. Sci. Eng. A, 2006, vol. 423, pp. 269–81.

    Article  Google Scholar 

  23. M. Mosallaee, A. Ekrami, K. Ohsasa, and K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, p. 2389.

    Article  Google Scholar 

  24. S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3545–53.

    Article  Google Scholar 

  25. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, in press.

  26. T.C. Illingworth, I.O. Golosnoy, and T.W. Clyne: Mater. Sci. Eng. A, 2007, vol. 445, pp. 493–500.

    Article  Google Scholar 

  27. T. Shinmura, K. Ohsasa, and T. Narita: Mater. Trans., 2001, vol. 42, pp. 292–97.

    Article  Google Scholar 

  28. J. Ruiz-Vargas, N. Siredey-Schwaller, N. Gey, P. Bocher, and A. Hazotte: J. Mater. Process. Technol., 2013, vol. 213, pp. 20–29.

    Article  Google Scholar 

  29. A. Ghoneim and O.A. Ojo: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 900–11.

    Article  Google Scholar 

  30. O.A. Ojo and O. Aina: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1481–85.

    Article  Google Scholar 

  31. D.R. Askeland and P.P. Phulé: The Science and Engineering of Materials, Brooks/Cole-Thomson Learning, Monterey, CA, 2003.

    Google Scholar 

  32. O.A. Idowu, N.L. Richards, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2005, vol. 397, pp. 98–112.

    Article  Google Scholar 

  33. N.P. Wikstrom, O.A. Ojo, and M.C. Chaturvedi: Mater. Sci. Eng. A, 2006, vol. 417, pp. 299–306.

    Article  Google Scholar 

  34. R. Bakhtiari, A. Ekrami, and T.I. Khan: Mater. Sci. Eng. A, 2012, vol. 546, pp. 291–300.

    Article  Google Scholar 

  35. R.K. Saha and T.I. Khan: J. Mater. Eng. Perform., 2006, vol. 15, pp. 722–28.

    Article  Google Scholar 

  36. B. Abbasi-Khazaei, G. Asghari, and R. Bakhtiari: Weld. J., 2016, 95, 68–76.

    Google Scholar 

  37. H. Kokawa, C.H. Lee, and T.H. North: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 1627–31.

    Article  Google Scholar 

  38. M. Pouranvari, A. Ekrami, and A.H. Kokabi: Sci. Technol. Weld. Join., 2018, vol. 1, pp. 13–18.

    Article  Google Scholar 

  39. A.G. Bigvand, O.A. Ojo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 1670–74.

    Article  Google Scholar 

  40. M.M. Abdelfatah and O.A. Ojo: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 377–85.

    Article  Google Scholar 

  41. A. Ghasemi and M. Pouranvari: Sci. Technol. Weld. Join., 2018, vol. 23, pp. 441–48.

    Article  Google Scholar 

  42. W.G. Moffatt: The Handbook of Binary Phase Diagrams, vols. 1, General Electric Co., Schenectady, NY, 1976.

    Google Scholar 

  43. W.F. Gale and E.R. Wallach: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2451–57.

    Article  Google Scholar 

  44. S. Steuer and R.F. Singer: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226–32.

    Article  Google Scholar 

  45. D.J. Chakrabarti and D.E. Laughlin: J. Phase Equilib., 1982, vol. 3, pp. 45–48.

    Article  Google Scholar 

  46. J.C. Lippold, S.D. Kiser, and J.N. DuPont: Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons, New York, NY, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Pouranvari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 11, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, A., Pouranvari, M. Fast Isothermal Solidification During Transient Liquid Phase Bonding of a Nickel Alloy Using Pure Copper Filler Metal: Solubility vs Diffusivity. Metall Mater Trans A 50, 2235–2245 (2019). https://doi.org/10.1007/s11661-019-05149-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05149-5

Navigation