Skip to main content
Log in

Microstructural Evolution of Graded Transition Joints

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Carbon diffusion and the associated microstructural changes in dissimilar metal welds at elevated temperatures lead to a microstructure that is susceptible to premature failure. Graded transition joints (GTJs) can potentially provide a viable replacement to prolong the service life of these components. The purpose of the current investigation is to fabricate, age, and characterize GTJs using three candidate filler metals (Inconel 82, EPRI P87, and 347H) to understand the microstructural evolution at elevated temperatures. Microhardness measurements were performed on the GTJs in the as-welded and aged conditions to understand the initial strength gradients throughout the graded region and how they evolve with aging time. Additionally, energy dispersive spectrometry was performed to measure the compositional gradients, which were input into thermodynamic and kinetic calculations to understand the carbon diffusion behavior and phase stability. Enhanced carbon diffusion occurred at the layer interfaces in the graded region of the GTJ, which indicated important regions that undergo microstructural evolution. The hardness results also revealed hardness changes at the layer interfaces. The analyzed interfaces demonstrated that carbon diffusion and corresponding carbide redistribution occurred that accounted for the observed hardness gradients. Additionally, the transition from a martensitic to austenitic region was observed in each GTJ that contributed to the hardness variations in the graded region. Finally, the formation of a nickel-rich martensitic constituent was observed in the graded region of all filler metals after aging. This constituent was originally austenite at the aging temperature, and transformed to martensite with no change in composition upon cooling. The morphologies of the constituent in the three filler metals are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G. Çam and M. Koçak: Int. Mater. Rev., 1998, vol. 43, pp. 1–44.

    Article  Google Scholar 

  2. G. Çam and M. Koçak: Sci. Technol. Weld. Join., 1998, vol. 3, pp. 159–75.

    Article  Google Scholar 

  3. G. Çam and G. Ipekoglu: Int. J. Adv. Manuf. Technol., 2017, vol. 91, pp. 1851–66.

    Article  Google Scholar 

  4. R.L. Klueh and J.F. King: Weld. J., 1982, 62, pp. 302–11.

    Google Scholar 

  5. J.N. DuPont: Int. Mater. Rev., 2012, vol. 57, pp. 208–34.

    Article  Google Scholar 

  6. R. Dooley and P. Chang: Proc. Int. Conf. on Boiler tube failures in fossil plants, 1997, pp. 2–10.

  7. I. Ramu and S.C. Mohanty: Procedia Mater. Sci., 2014, vol. 6, pp. 460–7.

    Article  Google Scholar 

  8. M. Bhandari and K. Purohit: IOSR J. Mech. Civ. Eng., 2014, vol. 10, pp. 46–55.

    Article  Google Scholar 

  9. A. Gupta and M. Talha: Prog. Aerosp. Sci., 2015, vol. 79, pp. 1–14.

    Article  Google Scholar 

  10. C.D. Lundin: Weld. J., 1982, 61, p. 58–63.

    Google Scholar 

  11. M. Gittos and T. Gooch: Weld. Res. Suppl., 1992, 71, pp. 461–72.

    Google Scholar 

  12. G.J. Brentrup and J.N. DuPont: Weld. J., 2013, vol. 92, pp. 72–9.

    Google Scholar 

  13. Brentrup, G. J., Snowden, B. S., DuPont, J. N., & Grenestedt, J. L. (2012). Design considerations of graded transition joints for welding dissimilar alloys. Welding Journal, 91, 252-59.

    Google Scholar 

  14. N. Sridharan, E. Cakmak, B. Jordan, D. Leonard, W.H. Peter, R.R. Dehoff, D. Gandy, and S.S. Babu: Weld. J., 2017, vol. 96, p. 295-306.

    Google Scholar 

  15. J.N. Dupont and A.R. Marder: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 481–9.

    Article  Google Scholar 

  16. J.P. Galler, J.N. Dupont, S.S. Babu, and M. Subramanian: Metall. Mater. Trans. A, 2018.

  17. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin: 2007, vol. 29, pp. 92–101.

    Google Scholar 

  18. A. Borgenstam, L. Höglund, J. Ågren, and A. Engström: J. Phase Equilibria, 2000, vol. 21, pp. 269–80.

    Article  Google Scholar 

  19. Thermo-Calc Software MOB2 TCS Alloy Mobility Database.

  20. Thermo-Calc Software TCFE7-TCS Steels/Fe-Alloys Database version 7.

  21. Thermo-Calc Software Ni-Data-v7 Ni-Alloys Database.

  22. R.L. Klueh: Metall. Trans. A, 1978, vol. 9, pp. 1591–8.

    Article  Google Scholar 

  23. K. Laha, K.S. Chandravathi, K.B.S. Rao, S.L. Mannan, and D.H. Sastry: Metall. Mater. Trans. a, 2001, vol. 32A, pp. 115–24.

    Article  Google Scholar 

  24. J.D. Parker and G.C. Stratford: J. Mater. Sci., 2000, vol. 35, pp. 4099–107.

    Article  Google Scholar 

  25. Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, and H. Li: J. Mater. Res., 2015, vol. 30, pp. 3642–52.

    Article  Google Scholar 

  26. S.W. Banovic, J.N. Dupont, and A.R. Marder: Weld. J., 2001, 80, pp. 63–70.

    Google Scholar 

  27. J.N. Dupont and C.S. Kusko: Weld. J., 2007, vol. 86, p. 51s–54s.

    Google Scholar 

  28. K.W. Andrews: J. Iron Steel Inst., 1965, 203, pp. 721–27.

    Google Scholar 

  29. R.J. Christoffel and M.R. Curran: Weld. J., 1956, vol. 35, 457-468.

    Google Scholar 

  30. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Trasformations in Metals and Alloys, Third., Taylor and Francis Group, 2009.

    Google Scholar 

  31. L. S. Darken: Metall. Mater. Trans. B, 1948, vol. 41B, 430–38.

    Google Scholar 

  32. J.F. Eckel: Weld. J., 1964, vol. 43, 170-78.

    Google Scholar 

  33. G. Krauss: Steels: Processing, Structure, and Performance, ASM International, 2015.

  34. Sindo K (2003) Welding Metallurgy, Wiley, New York, pp. 822-832.

    Google Scholar 

  35. G. Krauss: Mater. Sci. Eng. A, 1999, vol. 273–275, pp. 40–57.

    Article  Google Scholar 

  36. E.C. Bain: Functions of the Alloying Elements in Steel, American Society for Metals, 1939.

  37. R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, Fifth Edit., Wiley and Sons, 2013.

    Google Scholar 

  38. W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, vol. 94, Wiley, New York, 2007.

    Google Scholar 

  39. I. Hajiannia, M. Shamanian, and M. Kasiri: Mater. Des., 2013, vol. 50, pp. 566–73.

    Article  Google Scholar 

  40. B. Shalchi Amirkhiz, S. Xu, J. Liang, and C. Bibby: in: 36th Annu. CNS Conf.

  41. Y. Minami, H. Kimura, and M. Tanimura: J. Mater. Energy Syst., 1985, vol. 7, pp. 45–54.

    Article  Google Scholar 

  42. R. Mittal and B.S. Sidhu: J. Mater. Process. Technol., 2015, vol. 220, pp. 76–86.

    Article  Google Scholar 

  43. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17, pp. 1–14.

    Article  Google Scholar 

  44. H. Tanaka, M. Murata, F. Abe, and K. Yagi: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 1049–52.

    Article  Google Scholar 

  45. R.L. Klueh and J.F. King: 1981, p. ORNL-5783.

  46. E.J. Barrick, D. Jain, J.N. DuPont, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48, pp. 5890–910.

    Article  Google Scholar 

  47. D. Isheim, A.H. Hunter, X.J. Zhang, and D.N. Seidman: Metall. Mater. Trans. Trans. A, 2013, vol. 44, pp. 3046–59

    Article  Google Scholar 

  48. D. Jain, D. Isheim, X.J. Zhang, G. Ghosh, and D.N. Seidman: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3642–54.

    Article  Google Scholar 

  49. S.J. Wu, G.J. Sun, Q.S. Ma, Q.Y. Shen, and L. Xu: J. Mater. Process. Technol., 2013, vol. 213, pp. 120–8.

    Article  Google Scholar 

  50. F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku, C. Shiga, and S. Suzuki: Transcations JWRI, 1995, vol. 24, pp. 1–24.

    Google Scholar 

  51. Y. Li and T.N. Baker: Mater. Sci. Technol., 2010, vol. 26, pp. 1029–40.

    Article  Google Scholar 

  52. C.L. Davis and J.E. King: Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.

    Article  Google Scholar 

  53. X. Li, X. Ma, S. V. Subramanian, C. Shang, and R.D.K. Misra: Mater. Sci. Eng. A, 2014, vol. 616, pp. 141–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Galler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galler, J.P., DuPont, J.N., Babu, S.S. et al. Microstructural Evolution of Graded Transition Joints. Metall Mater Trans A 50, 2201–2217 (2019). https://doi.org/10.1007/s11661-019-05138-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05138-8

Navigation