Skip to main content
Log in

Simulated Stress-Induced Sensitization Study for the Heat-Affected Zone of the 304LN Stainless Steel Weld Using a Thermomechanical Simulator

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stress-induced sensitization in the heat-affected zone (HAZ) of the 304LN austenitic stainless steel weld at 923 K (650 °C) was evaluated using a thermomechanical simulator (Gleeble 3800) at different stress levels. The simulated sensitization behavior of the HAZ was studied in close approximation of the stress and weld thermal cycle that is generally observed during pulse current gas metal arc welding of the 25-mm-thick section of the 304LN steel. The response to the degree of sensitization, as a function of the type and magnitude of stresses present in the matrix, was established through observations on changes in microstructure, electrochemical properties and hardness measurements. Transmission electron microscopy and selected area diffraction confirm that sensitization occurred and Cr23C6 precipitates formed at grain boundaries. The results indicate that the presence of tensile or compressive stresses, especially above the yield stress of the steel, enhances sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A. Arutunow and K. Darowicki: Electrochim. Acta, 2009, vol. 54, pp. 1034–41.

    Article  Google Scholar 

  2. L. Jinlong, L. Hongyun, and L. Tongxiang: Mater. Chem. Phys., 2015, vol. 163, pp. 496–500.

    Article  Google Scholar 

  3. B.T. Lu, Z.K. Chen, J.L. Luo, B.M. Patchett, and Z.H. Xu: Electrochim. Acta, 2005, vol. 50, pp. 1391–1403.

    Article  Google Scholar 

  4. C.L. Briant, R.A. Mulford, and E.L. Hall: Corrosion, 1982, vol. 38, pp. 468–77.

    Article  Google Scholar 

  5. G.G. Scatigno, M.P. Ryan, F. Giuliani, and M.R. Wenman: Mater. Sci. Eng. A, 2016, vol. 668, pp. 20–29.

    Article  Google Scholar 

  6. R.K. Dayal, N. Parvathavarthini, and B. Raj: Int. Mater. Rev., 2005, vol. 50, pp. 129–55.

    Article  Google Scholar 

  7. R. Singh, B. Ravikumar, A. Kumar, P.K. Dey, and I. Chattoraj: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2441–47.

    Article  Google Scholar 

  8. C. Tedman, D. Vermilyea, and D. Broeker: Corrosion, 1971, vol. 27, pp. 104–06.

    Article  Google Scholar 

  9. R. Singh, S.G. Chowdhury, G. Das, P.K. Singh, and I. Chattoraj: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 986–1003.

    Article  Google Scholar 

  10. N. Srinivasan, V. Kain, N. Birbilis, K.V. Mani Krishna, S. Shekhawat, and I. Samajdar: Corros. Sci., 2015, vol. 100, pp. 544–55.

    Article  Google Scholar 

  11. A.H. Advani, L.E. Murr, D.G. Atteridge, and R. Chelakara: Metall. Mater. Trans. A, 1991, vol. 22A, pp. 2917–34.

    Article  Google Scholar 

  12. R. Beltran, J.G. Maldonado, L.E. Murr, and W.W. Fisher: Acta Mater., 1997, vol, 45, pp. 4351–60.

    Article  Google Scholar 

  13. N. Parvathavarthini and R.K. Dayal: J. Nucl. Mater., 2002, vol. 305, pp. 209–19.

    Article  Google Scholar 

  14. V. Kain, K. Chandra, K.N. Adhe, and P.K. De: J. Nucl. Mater., 2004, vol. 334, pp. 115–32.

    Article  Google Scholar 

  15. S.G. Kulkarni: Ph.D. Thesis, IIT Roorkee, Roorkee, Uttarakhand, India, 2008.

  16. K. Chandra, V. Kain, V.S. Raja, R. Tewari, and G.K. Dey: Corros. Sci., 2012, vol. 54, pp. 279–90.

    Article  Google Scholar 

  17. N. Parvathavarthini, R.K. Dayal, S.K. Seshadri, and J.B. Gnanamoorthy: J. Nucl. Mater., 1989, vol. 168, pp. 83–96.

    Article  Google Scholar 

  18. R. Singh, G. Das, P.K. Singh, and I. Chattoraj: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1219–34.

    Article  Google Scholar 

  19. R. Anant and P.K. Ghosh: J. Mater. Process. Technol., 2017, vol. 239, pp. 210–21.

    Article  Google Scholar 

  20. K. Poorhaydari, B.M. Patchett, and D.G. Ivey: Weld. J., 2005, vol. 84, pp. 149–55.

    Google Scholar 

  21. W. Jiang and K. Yahiaoui: Int. J. Press. Vessel Pipe, 2012, vol. 95, pp. 39–47.

    Article  Google Scholar 

  22. K. Devakumaran, M.R. Ananthapadmanaban, and P.K. Ghosh: Defence Technol., 2015, vol. 11, pp. 147–56.

    Article  Google Scholar 

  23. P.K. Ghosh, A. Goyal, V. Bansal, and R. Kumar: Proc. 4th Int. Conf. Thermomech. Simul. Process. Steel, R&D Centre, SAIL, Ranchi, 2016.

  24. N. Parvathavarthini, R.K. Dayal, and J.B. Gnanamoorthy: J. Nucl. Mater., 1994, vol. 208, pp. 251–58.

    Article  Google Scholar 

  25. Y.J. Oh and J.H. Hong: J. Nucl. Mater., 2000, vol. 278, pp. 242–50.

    Article  Google Scholar 

  26. S. Ghosh, V. Kain, A. Ray, H. Roy, S. Sivaprasad, S. Tarafder, and K.K. Ray: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2938–49.

    Article  Google Scholar 

  27. N. Parvathavarthini, U.K. Mudali, L. Nenova, C. Andreev, and B. Raj: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2069–84.

    Article  Google Scholar 

  28. A. Yae Kina, V.M. Souza, S.S.M. Tavares, J.M. Pardal, and J.A. Souza: Mater. Charact., 2008, vol. 59, pp. 651–55.

    Article  Google Scholar 

  29. C.L. Briant and A.M. Ritter: Scripta Metall., 1979, vol. 13, pp. 177–81.

    Article  Google Scholar 

  30. A. Ben Rhouma, T. Amadou, H. Sidhom, and C. Braham: J. Alloy. Compd., 2017, vol. 708, pp. 871–86.

    Article  Google Scholar 

  31. N. Parvathavarthini, S. Mulki, R.K. Dayal, I. Samajdar, K.V. Mani, and B. Raj: Corros. Sci., 2009, vol. 51, pp. 2144–50.

    Article  Google Scholar 

  32. P. Muri, F.V.V. Sousa, K.S. Assis, A.C. Rocha, O.R. Mattos, and I.C.P.M. Mattos: Electrochim. Acta, 2014, vol. 124, pp. 183–89.

    Article  Google Scholar 

  33. A.H. Advani, L.E. Murr, D.G. Atteridge, and R. Chelakara: Metall. Mater. Trans. A, 1991, vol. 22 (12), pp. 2917–34.

    Article  Google Scholar 

  34. T. Eto, A. Sato, and T. Mori: Acta Metall., 1978, vol. 26 (3), pp. 499–508.

    Article  Google Scholar 

  35. W.F. Hosford and S.P. Agrawal: Metall. Trans., 1975, vol. 6, pp. 487–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakriti Kumar Ghosh.

Additional information

Manuscript submitted March 31, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barla, N.A., Ghosh, P.K., Das, S. et al. Simulated Stress-Induced Sensitization Study for the Heat-Affected Zone of the 304LN Stainless Steel Weld Using a Thermomechanical Simulator. Metall Mater Trans A 50, 1283–1293 (2019). https://doi.org/10.1007/s11661-018-5082-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5082-5

Navigation