Skip to main content
Log in

Formation of Lateral Sliver Defects in the Platform Region of Single-Crystal Superalloy Turbine Blades

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sliver defects are known to extend along the casting axial direction. In this study, the lateral sliver defects on the platform base of single-crystal (SX) superalloy turbine blades were detected by macrocorrosion and electron backscattering diffraction. It was identified that misorientation between adjacent sliver textures was limited within medium-angle misorientation defects (10.5 deg). Moreover, the lateral sliver defects were more prone to occurring at a lower withdrawal rate. Based on the evolution of thermal profile and stress contours, the high stresses around the boundary between the blade body and the platform region were supposed to be the formation mechanism of lateral sliver defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. L.M. Feitosa, N. D’Souza, G.D. West, and H.B. Dong: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 3814–22.

    Article  Google Scholar 

  2. H.J. Dai, N. D’Souza, and H.B. Dong: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3430–38.

    Article  Google Scholar 

  3. H.J. Dai, H.B. Dong, N. D’Souza, J.C. Gebelin, and R.C. Reed: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3439–46.

    Article  Google Scholar 

  4. S.F. Gao, L. Liu, N. Wang, X.B. Zhao, J. Zhang, and H.Z. Fu: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3767–75.

    Article  Google Scholar 

  5. P. Hallensleben, H. Schaar, P. Thome, N. Joens, A. Jafarizadeh, I. Steinbach, G. Eggeler, and J. Frenzel: Mater. Des., 2017, vol. 128, pp. 98–111.

    Article  Google Scholar 

  6. Q.Z. Chen, C.N. Jones, and D.M. Knowles: Mater. Sci. Eng. A, 2004, vol. 385, pp. 402–18.

    Article  Google Scholar 

  7. R.E. Napolitano and R.J. Schaefer: J. Mater. Sci., 2000, vol. 35, pp. 1641–59.

    Article  Google Scholar 

  8. U. Paul, P.R. Sahm, and D. Goldschmidt: Mater. Sci. Eng. A, 1993, vol. 173, pp. 49–54.

    Article  Google Scholar 

  9. C. Panwisawas, H. Mathur, J.-C. Gebelin, D. Putman, C.M.F. Rae, and R.C. Reed: Acta Mater., 2013, vol. 61, pp. 51–66.

    Article  Google Scholar 

  10. X.L. Yang, H.B. Dong, W. Wang, and P.D. Lee: Mater. Sci. Eng. A, 2004, vol. 386, pp. 129–39.

    Article  Google Scholar 

  11. X.B. Meng, J.G. Li, Z.Q. Chen, Y.H. Wang, S.Z. Zhu, X.F. Bai, F. Wang, J. Zhang, T. Jin, X.F. Sun, and Z.Q. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1955–65.

    Article  Google Scholar 

  12. D. Ma and A. Buehrig-Polaczek: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 738–48.

    Article  Google Scholar 

  13. N. Stanford, A. Djakovic, B.A. Shollock, M. McLean, N. D’Souza, and P.A. Jennings: Scripta Mater., 2004, vol. 50, pp. 159–63.

    Article  Google Scholar 

  14. D. Ma, Q. Wu, and A. Buehrig-Polaczek: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 344–53.

    Article  Google Scholar 

  15. S. Tin and T.M. Pollock: J. Mater. Sci., 2004, vol. 39, pp. 7199–7205.

    Article  Google Scholar 

  16. F. Wang, Z. Wu, C. Huang, D. Ma, J. Jakumeit, and A. Buehrig-Polaczek: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5924–39.

    Article  Google Scholar 

  17. W. Bogdanowicz, R. Albrecht, J. Sieniawski, and K. Kubiak: J. Cryst. Growth, 2014, vol. 401, pp. 418–22.

    Article  Google Scholar 

  18. M. Newell, K. Devendra, P.A. Jennings, and N. D’Souza: Mater. Sci. Eng. A, 2005, vol. 412, pp. 307–15.

    Article  Google Scholar 

  19. N. D’Souza, M. Newell, K. Devendra, P.A. Jennings, M.G. Ardakani, and B.A. Shollock: Mater. Sci. Eng. A, 2005, vol. 413, pp. 567–70.

    Article  Google Scholar 

  20. G. Brewster, N. D’Souza, K.S. Ryder, S. Simmonds, and H.B. Dong: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1288–1302.

    Article  Google Scholar 

  21. N. D’Souza, S. Simmonds, G.D. West, and H.B. Dong: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4764–73.

    Article  Google Scholar 

  22. Aveson J.W., Tennant P.A., Foss B.J., Shollock B.A., Stone H.J., D’Souza N. (2013) Acta Mater. 61:5162–71.

    Article  Google Scholar 

  23. H.N. Mathur, N. Jones, and C.M.F. Rae: MATEC Web Conf., 2014, vol. 14, art. no. 07003.

  24. M. Huo, L. Liu, W.C. Yang, D.J. Sun, S.S. Hu, J. Zhang, and H.Z. Fu: Adv. Eng. Mater., 2018, vol. 20, art. no. 1701189.

  25. D.J. Sun, L. Liu, T.W. Huang, W.C. Yang, Y.F. Li, Q.Z. Yue, J. Zhang, and H.Z. Fu: Prog. Nat. Sci.: Mater. Int., 2018, vol. 28, pp. 489–95.

    Article  Google Scholar 

  26. N. Wang, L. Liu, S. Gao, X. Zhao, T. Huang, J. Zhang, and H. Fu: J. Alloy Compd., 2014, vol. 586, pp. 220–29.

    Article  Google Scholar 

  27. Y.F. Li, L. Liu, D.J. Sun, Q.Z. Yue, T.W. Huang, B. Gan, J. Zhang, and H.Z. Fu: J. Alloy Compd., 2018, vol. 773, pp. 432–42.

    Article  Google Scholar 

  28. A.J. Elliott, S. Tin, W.T. King, S.C. Huang, M.F.X. Gigliotti, and T.M. Pollock: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3221–31.

    Article  Google Scholar 

  29. J.D. Miller and T.M. Pollock: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 411–25.

    Article  Google Scholar 

  30. D. Szeliga: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2550–70.

    Article  Google Scholar 

  31. J. Krawczyk, W. Bogdanowicz, A. Hanc-Kuczkowska, A. Tondos, and J. Sieniawski: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4353–61.

    Article  Google Scholar 

  32. A. Onyszko, W. Bogdanowicz, K. Kubiak, and J. Sieniawski: Cryst. Res. Technol., 2010, vol. 45, pp. 1326–32.

    Article  Google Scholar 

  33. X.P. Guo, H.Z. Fu, and J.H. Sun: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 997–1009.

    Article  Google Scholar 

  34. L. Liu, D. Sun, T. Huang, Y. Zhang, Y. Li, J. Zhang, and H. Fu: Acta Metall. Sinica, 2018, vol. 54, pp. 615–26.

    Google Scholar 

  35. T.J. Fitzgerald and R.F. Singer: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1377–83.

    Article  Google Scholar 

  36. J. Zhang and L.H. Lou: J. Mater. Sci. Technol., 2007, vol. 23, pp. 289–300.

    Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China (51331005, 51631008, 51690163, 51771148, and 51501152), The National Key Research and Development Program (2016YFB0701400 and 2017YFB0702900), the Natural Science Foundation of Shaanxi Province (2016JQ5093), and the Fundamental Research Funds for the Central Universities (3102017ZY054).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Liu or Taiwen Huang.

Additional information

Manuscript submitted September 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Liu, L., Huang, T. et al. Formation of Lateral Sliver Defects in the Platform Region of Single-Crystal Superalloy Turbine Blades. Metall Mater Trans A 50, 1119–1124 (2019). https://doi.org/10.1007/s11661-018-5060-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5060-y

Navigation