Skip to main content
Log in

Continuous Morphological Transition and Its Mechanism of Al3Ni Phase at the Liquid–Solid Interface During Solidification

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The morphological transition and growth mechanism of Al3Ni phase during solidification at the liquid Al/solid Ni interface was investigated through synchrotron radiography. The remelted peritectic Al3Ni is dominated by coalescence of adjacent grains and precipitation with the morphology changing from columnar, irregular, scallop type to faceted shape. The hollow proeutectic Al3Ni is formed on a solid base. The increased r/R ratio and steep variation lead to the change from regular to irregular hollowness with asymmetrical shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. W. Wołczyński, E. Guzik, J. Janczak-Rusch, D. Kopyciński, J. Golczewski, H.M. Lee, and J. Kloch: Mater. Charact., 2006, vol. 56, pp. 274–80.

    Article  Google Scholar 

  2. J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Acta Mater., 2008, vol. 56, pp. 1840–48.

    Article  Google Scholar 

  3. G.A. López, S. Sommadossi, P. Zieba, W. Gust, and E.J. Mittemeijer: Mater. Chem. Phys., 2002, vol. 78, pp. 459–63.

    Article  Google Scholar 

  4. T.M. Wang, F. Cao, P. Zhou, H.J. Kang, Z.N. Chen, Y.N. Fu, T.Q. Xiao, W.X. Huang, and Q.X. Yuan: J. Alloys Compd., 2014, vol. 616, pp. 550–55.

    Article  Google Scholar 

  5. Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, and J.G. Li: J. Mater. Sci. Technol., in press.

  6. G.A. López, S. Sommadossi, W. Gust, and E.J. Mittemeijer: Interface Sci., 2002, vol. 10, pp. 13–19.

    Article  Google Scholar 

  7. K. Bouché, F. Barbier, and A. Coulet: Z. Metallkd., 1997, vol. 88, pp. 446–51.

    Google Scholar 

  8. W. Wołczyński, T. Okane, C. Senderowski, B. Kania, D. Zasada, and J. Janczak-Rusch: Arch. Metall. Mater., 2011, vol. 56, pp. 311–23.

    Google Scholar 

  9. J.F. Zhao, C. Unuvar, U. Anselmi-Tamburini, and Z.A. Munir: Acta Mater., 2007, vol. 55, pp. 5592–5600.

    Article  Google Scholar 

  10. E.Y. Guo, A.B. Phillion, B. Cai, S.S. Shuai, D. Kazantsev, T. Jing, and P.D. Lee: Acta Mater., 2017, vol. 123, pp. 373–82.

    Article  Google Scholar 

  11. B. Cai, J. Wang, A. Kao, K. Pericleous, A.B. Phillion, R.C. Atwood, and P.D. Lee: Acta Mater., 2016, vol. 117, pp. 160–69.

    Article  Google Scholar 

  12. Z.Y. Ding, Q.D. Hu, W.Q. Lu, X. Ge, S. Cao, S.Y. Sun, T.X. Yang, M.X. Xia, and J.G. Li: Mater. Charact., 2018, vol. 136, pp. 157–64.

    Article  Google Scholar 

  13. Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 1486–91.

    Google Scholar 

  14. G.P. Liu, Q.D. Wang, L. Zhang, B. Ye, H.Y. Jiang, and W.J. Ding: Metall. Mater. Trans. A, 2018, vol. 49A pp. 661–72.

    Article  Google Scholar 

  15. X. Li, Y. Fautrelle, Z.M. Ren, Y.D. Zhang, and C. Esling: Acta Mater., 2010, vol. 58, pp. 2430–41.

    Article  Google Scholar 

  16. D.M. Liu: PhD thesis, Harbin Institute of Technology, 2012.

  17. Z.Y. Ding, Q.D. Hu, W.Q. Lu, S.Y. Sun, M.X. Xia, and J.G. Li: Scripta Mater., 2017, vol. 130, pp. 214–18.

    Article  Google Scholar 

  18. H. Okamoto: J. Phase Equilibria, 1993, vol. 14, pp. 652–53.

    Article  Google Scholar 

  19. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998.

    Google Scholar 

  20. Z.Y. Ding, Q.D. Hu, W.Q. Lu, X.W. Xu, X. Ge, S. Cao, T.X. Yang, H.H. Ge, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2018. https://doi.org/10.1007/s11661-018-4965-9.

    Google Scholar 

  21. H.K. Kim and K.N. Tu: Phys. Rev. B, 1996, vol. 53, pp. 16027–16034.

    Article  Google Scholar 

  22. A.J. Bradley and A. Taylor: Philos. Mag., 1937, vol. 23, pp. 1049–67.

    Article  Google Scholar 

  23. X. Li, Y. Fautrelle, A. Gagnoud, R. Moreau, D.F. Du, Z.M. Ren, and X.G. Lu: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1180–97.

    Article  Google Scholar 

  24. W.K. Burton, N. Cabrera, and F.C. Frank: Nature, 1949, vol. 163, p. 398.

    Article  Google Scholar 

  25. A.R. Verma: Nature, 1951, vol. 167, p. 939.

    Article  Google Scholar 

  26. F. Meng, S.A. Morin, A. Forticaux, and S. Jin: Accounts Chem. Res., 2013, vol. 46, pp. 1616–26.

    Article  Google Scholar 

  27. S.A. Morin, M.J. Bierman, J. Tong, and S. Jin: Science, 2010, vol. 328, pp. 476–80.

    Article  Google Scholar 

Download references

This work is supported by the National Key Research and Development Program (2017YFA0403800), National Natural Science Foundation of China (51374144, 51727802), Shanghai Municipal Natural Science Foundation (13ZR1420600), and Shanghai Rising-Star Program (14QA1402300). The support of synchrotron radiation phase-contrast imaging by the BL13W1 beam line of SSRF, China, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiaodan Hu.

Additional information

Manuscript submitted October 14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Hu, Q., Lu, W. et al. Continuous Morphological Transition and Its Mechanism of Al3Ni Phase at the Liquid–Solid Interface During Solidification. Metall Mater Trans A 50, 556–561 (2019). https://doi.org/10.1007/s11661-018-5059-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5059-4

Navigation