Skip to main content

Advertisement

Log in

Creep Behavior and Microstructural Evolution of a Fe-20Cr-25Ni (Mass Percent) Austenitic Stainless Steel (Alloy 709) at Elevated Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Understanding creep properties and microstructural evolution for candidate materials of the next-generation nuclear reactors is essential for design and safety considerations. In this work, creep tests were carried out at temperatures ranging from 973 to 1073 K and stresses 40 to 275 MPa followed by microstructural examinations of a Fe-20Cr-25Ni (mass pct) austenitic stainless steel (Alloy 709), a candidate structural material for the Sodium-cooled Fast Reactors. The apparent stress exponent and activation energy were found to be 6.8 ± 0.4 and 421 ± 38 kJ/mole, respectively. The higher activation energy relative to that of lattice self-diffusion together with the observation of dislocation-precipitate interactions in the crept specimens was rationalized based on the concept of threshold stress. The threshold stresses were estimated using a linear extrapolation method and found to decrease with increased temperature. By invoking the concept of threshold stresses, the true stress exponent and activation energy were found to be 4.9 ± 0.2 and 299 ± 15 kJ/mole, respectively. Together with the observation of subgrain boundary formation, the rate-controlling mechanism in the Alloy 709 was conclusively determined to be the high-temperature dislocation climb. Three types of precipitates were identified in the crept samples: Nb(C, N), Z-phases of sizes between 20 and 200 nm within the matrix and M23C6 with sizes between 200 and 700 nm within the matrix and on grain boundaries. Further, the analysis of creep rupture data at high stresses indicated that the Alloy 709 obeyed Monkman–Grant and modified Monkman–Grant relationships with creep damage tolerance factor of ~ 5. Using the Larson–Miller parameter, it was concluded that the Alloy 709 exhibited superior creep strengths relative to the other advanced austenitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T.R. Allen, K. Sridharan, L. Tan, W.E. Windes, J.I. Cole, D.C. Crawford, G.S. Was: Nucl. Technol., 2008, vol. 162, pp. 342-357.

    Article  Google Scholar 

  2. K.L. Murty, I. Charit: J. Nucl. Mater., 2008, vol. 383, pp. 189-195.

    Article  Google Scholar 

  3. J.T. Busby: J. Nucl. Mater., 2009, vol. 392, pp. 301-306.

    Article  Google Scholar 

  4. S.L.Mannan, S.C.Chetal, B. Raj, S.B.Bhoje: Transactions- Indian Institute of Metals, 2003, vol. 56, pp. 1-35.

    Google Scholar 

  5. J.D. Cook, D.R. Harries, A.C. Roberts: in Creep Strength in Steels and High Temperature alloys, The Metals Society, London, 1972, p. 91.

    Google Scholar 

  6. W. Corwin: Fiscal Year (FY) 2015 Annual Planning Webinar, DOE, 2014.

  7. T.-L. Sham, L. Tan, Y. Yamamoto: in Fast Reactors and Related Fuel Cycles: Safe Technologies and Sustainable Scenarios (FR13), IAEA, Vienna, 2015, pp. 1-9.

    Google Scholar 

  8. T. Takahashi, M. Sakakibara, M. Kikuchi, T. Ogawa, H. Sakurai, S. Araki, K. Nagao, and H. Yasuda: Nippon Steel Corporation, 1988.

  9. H.E. Evans, D.A. Hilton: Nucl. Energy, 1973, vol. 18, pp. 33-38.

    Google Scholar 

  10. G. Knowles: Met. Sci., 1977, vol. 11, pp. 117-122.

    Article  Google Scholar 

  11. O.K. Chopra, K. Natesan: Metall. Trans. A, 1977, vol. 8, pp. 633-638.

    Article  Google Scholar 

  12. J.S. Zhang, P.E. Li, J.Z. Jin: Acta Metall. Mater., 1991, vol. 39, pp. 3063-3070.

    Article  Google Scholar 

  13. E. Evangelista, C. Guardamagna, L. Kloc, A. Rosen, S. Spigarelli: High Temp. Mater. Processes, 1995, vol. 14, pp. 151-161.

    Google Scholar 

  14. D.V.V. Satyanarayana, G. Malakondaiah, D.S. Sarma: Mater. Sci. Eng., A, 2002, vol. 323, pp. 119-128.

    Article  Google Scholar 

  15. L.J. Meng, J. Sun, H. Xing: J. Nucl. Mater., 2012, vol. 427, pp. 116-120.

    Article  Google Scholar 

  16. D.-B. Park, S.-M. Hong, K.-H. Lee, M.-Y. Huh, J.-Y. Suh, S.-C. Lee, W.-S. Jung: Mater. Charact., 2014, vol. 93, pp. 52-61.

    Article  Google Scholar 

  17. P. Ou, L. Li, X.-F. Xie, J. Sun: Acta Metall. Sin. 2015, 28, 1336–43.

    Article  Google Scholar 

  18. A.S. Alomari, N. Kumar, K.L. Murty: in Proceedings of the ASME 2017 Power and Engineering Conference, Charlotte, NC, USA, 2017.

  19. J.K. Benz, L.J. Carroll, J.K. Wright, R.N. Wright, T.M. Lillo: Metall. Trans. A, 2014, vol. 45, pp. 3010-3022.

    Article  Google Scholar 

  20. T. Sourmail, H.K.D.H. Bhadeshia: Metall. Trans. A, 2005, vol. 36, pp. 23-34.

    Article  Google Scholar 

  21. B.K. Kim, L. Tan, C. Xu, Y. Yang, X. Zhang, M. Li: J. Nucl. Mater., 2016, vol. 470, pp. 229-235.

    Article  Google Scholar 

  22. C. Degueldre, J. Fahy, O. Kolosov, R.J. Wilbraham, M. Döbeli, N. Renevier, J. Ball, S. Ritter: J. Mater. Eng. Perform., 2018, vol. 27, pp. 2081-2088.

    Article  Google Scholar 

  23. T. Chen, L. Tan, Z. Lu, H. Xu: Acta Mater., 2017, vol. 138, pp. 83-91.

    Article  Google Scholar 

  24. D.S. Smith, N.J. Lybeck, J.K. Wright, R.N. Wright: Nucl. Eng. Des., 2017, vol. 322, pp. 331-335.

    Article  Google Scholar 

  25. A.S. Alomari, N. Kumar, K.L. Murty: Mater. Sci. Eng., A, 2018, vol. 729, pp. 157-160.

    Article  Google Scholar 

  26. A.S. Alomari, N. Kumar, K.L. Murty: in International Congress on Advances in Nuclear Power Plants (ICAPP), American Nuclear Society, Charlotte, NC, USA, 2018.

    Google Scholar 

  27. S. Upadhayay, H. Li, P. Bowen, A. Rabiei: Mater. Sci. Eng., A, 2018, vol. 733, pp. 338-349.

    Article  Google Scholar 

  28. K.L. Murty, F.A. Mohamed, J.E. Dorn: Acta Metall., 1972, vol. 20, pp. 1009-1018.

    Article  Google Scholar 

  29. T.G. Langdon: in Dislocations and properties of real materials, The Institute of Metals, London, 1985, pp. 221-238.

    Google Scholar 

  30. K.L. Murty, G. Dentel, J. Britt: Mater. Sci. Eng., A, 2005, vol. 410-411, pp. 28-31.

    Article  Google Scholar 

  31. J. Bird, A. Mukherjee, J. Dorn, in: Quantitative Relations between Properties and Microstructure, Israel Univ, 1969.

    Google Scholar 

  32. S. Latha, M.D. Mathew, P. Parameswaran, K. Sankara Rao, S.L. Mannan: Int. J. Press. Vessels Pip. 2008, 85, 866-870.

    Article  Google Scholar 

  33. S. Latha, M.D. Mathew, P. Parameswaran, K. Bhanu Sankara Rao, S.L. Mannan: Mater. Sci. Eng., A, 2010, vol. 527, pp. 5167-5174.

    Article  Google Scholar 

  34. A.F. Smith, G.B. Gibbs: Met. Sci. J., 1968, vol. 2, pp. 47-50.

    Article  Google Scholar 

  35. R. Lagneborg, B. Bergman: Met. Sci., 1976, vol. 10, pp. 20-28.

    Article  Google Scholar 

  36. R.S. Mishra, T.R. Bieler, A.K. Mukherjee: Acta Metall. Mater., 1995, vol. 43, pp. 877-891.

    Article  Google Scholar 

  37. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink, U. Sahaym: J. Nucl. Mater., 2012, vol. 423, pp. 110-119.

    Article  Google Scholar 

  38. A.F. Smith, G.B. Gibbs: Met. Sci. J., 1969, vol. 3, pp. 93-94.

    Article  Google Scholar 

  39. A.F. Smith: CEGB-RD/B/N–2330, Central Electricity Generating Board, United Kingdom, 1972.

  40. A.F. Smith: Zeitschrift für Metallkunde, 1975, vol. 66, pp. 692-696.

    Google Scholar 

  41. S.L. Robinson, O.D. Sherby: Acta Metall., 1969, vol. 17, pp. 109-125.

    Article  Google Scholar 

  42. E.G. Wilson: in Creep strength in steel and high temperature alloys, The Metal Society, London, 1972, pp. 111-121.

    Google Scholar 

  43. J. Weertman: in Rate Processes in Plastic Deformation of Materials, ASM, Cleveland, Ohio, USA, 1972, pp. 315–336.

    Google Scholar 

  44. K.L. Murty: in Creep and fracture of engineering materials and structures, The Minerals, Metals & Materials Society, Irvine, USA, 1997, pp. 69-78.

    Google Scholar 

  45. S. Gollapudi, I. Charit, K.L. Murty: Acta Mater., 2008, vol. 56, pp. 2406-2419.

    Article  Google Scholar 

  46. B. Kombaiah, K.L. Murty: Metall. Trans. A, 2015, vol. 46, pp. 4646-4660.

    Article  Google Scholar 

  47. A. Horsewell: Metall. Trans. A, 1978, vol. 9, pp. 1843-1847.

    Article  Google Scholar 

  48. M.D. Mathew, G. Sasikala, K. Bhanu Sankara Rao, S.L. Mannan: Mater. Sci. Eng., A, 1991, vol. 148, pp. 253-260.

    Article  Google Scholar 

  49. N.D. Evans, P.J. Maziasz, J.P. Shingledecker, M.J. Pollard: Metall. Trans. A, 2010, vol. 41, pp. 3032-3041.

    Article  Google Scholar 

  50. B. Peng, H. Zhang, J. Hong, J. Gao, H. Zhang, J. Li, Q. Wang: Mater. Sci. Eng., A, 2010, vol. 527, pp. 4424-4430.

    Article  Google Scholar 

  51. V. Vodárek: Mater. Sci. Eng., A, 2011, vol. 528, pp. 4232-4238.

    Article  Google Scholar 

  52. Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li: J. Mater. Res., 2015, vol. 30, pp. 3642-3652.

    Article  Google Scholar 

  53. Z. Zhang, Z. Hu, H. Tu, S. Schmauder, G. Wu: Mater. Sci. Eng., A, 2017, vol. 681, pp. 74-84.

    Article  Google Scholar 

  54. H.J. Kestenbach, T. Luiz Da Silvelra, S.N. Monteiro: Metall. Trans. A, 1976, vol. 7, pp. 155-158.

    Article  Google Scholar 

  55. E.C.Monkman, N.J.Grant: Proc. Am. Soc. Test. Mater., 1956, vol. 56, pp. 593.

    Google Scholar 

  56. F. Dobeš, K. Milička: Met. Sci., 1976, vol. 10, pp. 382-384.

    Article  Google Scholar 

  57. M.F. Ashby, B.F. Dyson: in Advances in Fracture Research, Pergamon Press, Oxford, 1984, pp. 3–30.

    Google Scholar 

  58. B. Wilshire, H. Burt: Int. J. Press. Vessels Pip., 2008, vol. 85, pp. 47-54.

    Article  Google Scholar 

  59. European Technology Development, 2005.

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Nuclear Energy University Programs (NEUP) of the Department of Energy, Office of Nuclear Energy for performing this research and Dr. Sam Sham of Argonne National Laboratory for various discussions and the experimental material. AA is thankful to KACST for funding his doctoral degree studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah S. Alomari.

Additional information

Manuscript submitted September 20, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomari, A.S., Kumar, N. & Murty, K.L. Creep Behavior and Microstructural Evolution of a Fe-20Cr-25Ni (Mass Percent) Austenitic Stainless Steel (Alloy 709) at Elevated Temperatures. Metall Mater Trans A 50, 641–654 (2019). https://doi.org/10.1007/s11661-018-5044-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5044-y

Navigation