Skip to main content
Log in

Sample Size and Strain-Rate-Sensitivity Effects on the Homogeneity of High-Pressure Torsion Deformed Disks

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-pressure torsion (HPT) has advanced to one of the leading severe plastic deformation (SPD) techniques over the last several years due to some unsurpassable advantages in comparison with other SPD techniques. In order to overcome the drawback of the generally small sample dimensions, novel HPT setups have been designed recently. The mechanical and microstructural results, however, may also be affected by the sample size used. To investigate the transferability of the results between different sample dimensions, a comparative study on copper was performed. The hardness distribution of different sample sizes ranging between 8 and 60 mm in diameter with a thickness of 0.6 and 12 mm was measured and accompanied with microstructural investigations. It will be shown that the results obtained from different disks are sample-size independent when some simple guidelines are obeyed. The influence of the significant factors, such as sample aspect ratio, deformation speed, and strain rate sensitivity, on the resulting mechanical and microstructural properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P.W. Bridgman: Phys. Rev., 1935, vol. 48, p. 825-47.

    Article  Google Scholar 

  2. A.P. Zhilyaev and T.G. Langdon: Progr. Mater. Sci., 2008, vol. 53, p. 893-979.

    Article  Google Scholar 

  3. K. Edalati and Z. Horita: Mater. Sci. Eng. A, 2016, vol. 652, p. 325-52.

    Article  Google Scholar 

  4. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter, and A. Bachmaier: Ann. Rev. Mater. Res., 2010, vol. 40, pp. 319–43.

    Article  Google Scholar 

  5. K. Edalati and Z. Horita: Acta Mater., 2011, vol. 59, p. 6831-36.

    Article  Google Scholar 

  6. K. Edalati, S. Toh, Y. Ikoma, and Z. Horita: Scripta Mater., 2011, vol. 65, p. 974-77.

    Article  Google Scholar 

  7. M. Ashida, T. Hamachiyo, K. Hasezaki, H. Matsunoshita, M. Kai, and Z. Horita: J. Phys. Chem. Solids, 2009, vol. 70, p. 1089-92.

    Article  Google Scholar 

  8. A. Bachmaier, A. Hohenwarter, and R. Pippan: Scripta Mater., 2009, vol. 61, p. 1016-19.

    Article  Google Scholar 

  9. I. Sabirov and R. Pippan: Scripta Mater., 2005, vol. 52, p. 1293-98.

    Article  Google Scholar 

  10. A. Bachmaier, M. Pfaff, M. Stolpe, H. Aboulfadl, and C. Motz: Acta Mater., 2015, vol. 96, p. 269-83.

    Article  Google Scholar 

  11. B. Oberdorfer, D. Setman, E.M. Steyskal, A. Hohenwarter, W. Sprengel, M. Zehetbauer, R. Pippan, and R. Würschum: Acta Mater., 2014, vol. 68, p. 189-95.

    Article  Google Scholar 

  12. O. Renk, A. Hohenwarter, S. Wurster, and R. Pippan: Acta Mater., 2014, vol. 77, p. 401-10.

    Article  Google Scholar 

  13. R.Z. Valiev, I.P. Semenova, V.V. Latysh, H. Rack, T.C. Lowe, J. Petruzelka, L. Dluhos, D. Hrusak, and J. Sochova: Adv. Eng. Mater., 2008, vol. 10, p. B15-B17, 702.

    Article  Google Scholar 

  14. K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S. Orimo, E. Akiba, and Z. Horita: Scripta Mater., 2016, vol. 124, p. 108-11.

    Article  Google Scholar 

  15. G. Sakai, K. Nakamura, Z. Horita, and T.G. Langdon: Mater. Sci. Eng. A, 2005, vol. 406, p. 268-73.

    Article  Google Scholar 

  16. Y. Harai, Y. Ito, and Z. Horita: Scripta Mater., 2008, vol. 58, p. 469-72.

    Article  Google Scholar 

  17. L.S. Tóth, M. Arzaghi, J.J. Fundenberger, B. Beausir, O. Bouaziz, and R. Arruffat-Massion: Scripta Mater., 2009, vol. 60, p. 175-77.

    Article  Google Scholar 

  18. Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, and H. Hahn: Mater. Sci. Eng. A, 2016, vol. 664, p. 247-56.

    Article  Google Scholar 

  19. A. Hohenwarter: Mater. Sci. Eng. A, 2015, vol. 626, p. 80-85.

    Article  Google Scholar 

  20. R. Pippan, S. Scheriau, A. Hohenwarter, and M. Hafok: Mater. Sci. Forum, 2008, vols. 584–586, p. 16-21.

    Article  Google Scholar 

  21. A. Hohenwarter, A. Bachmaier, B. Gludovatz, S. Scheriau, and R. Pippan: Int. J. Mater. Res., 2009, vol. 100, p. 1653-61.

    Article  Google Scholar 

  22. A. Hohenwarter, M. Rockenschaub, and R. Pippan: in Promoting Advanced Materials by SPD and Phase Transformation, Z. Horita and K. Edalati, eds., Kyushu University, 2017, pp. 74–75.

  23. K. Edalati, R. Miresmaeili, Z. Horita, H. Kanayama, and R. Pippan: Mater. Sci. Eng. A, 2011, vol. 528, p. 7301-305.

    Article  Google Scholar 

  24. P.H.R. Pereira, R.B. Figueiredo, Y. Huang, P.R. Cetlin, and T.G. Langdon: Mater. Sci. Eng. A, 2014, vol. 593, p. 185-88.

    Article  Google Scholar 

  25. R.B. Figueiredo, P. H. R. Pereira, M. T. P. Aguilar, P.R. Cetlin, and T.G. Langdon: Acta Mater., 2012, vol. 60, p. 3190-98.

    Article  Google Scholar 

  26. R.B. Figueiredo and T.G. Langdon: Mater. Sci. Eng. A, 2011, vol. 528, p. 4500-506.

    Article  Google Scholar 

  27. D.J. Lee, E.Y. Yoon, L.J. Park, and H.S. Kim: Scripta Mater., 2012, vol. 67, p. 384-87.

    Article  Google Scholar 

  28. F. Wetscher, A. Vorhauer, and R. Pippan: Mater. Sci. Eng. A, 2005, vols. 410–411, p. 213-16.

    Article  Google Scholar 

  29. H.W. Höppel, J. May, P. Eisenlohr, and M. Göken: Z. Met., 2005, vol. 96, p. 566-71.

    Article  Google Scholar 

  30. K.S. Kormout, R. Pippan, and A. Bachmaier: Adv. Eng. Mater., 2017, vol. 19, art. no. 1600675.

  31. V. Maier-Kiener, X. An, L. Li, Z. Zhang, R. Pippan, and K. Durst: J. Mater. Res., 2017, vol. 32, p. 4583-91.

    Article  Google Scholar 

  32. H. Jiang, Y.T. Zhu, D.P. Butt, I.V Alexandrov, and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 290, p. 128-38.

    Article  Google Scholar 

  33. A.I. Almazrouee, K.J. Al-Fadhalah, S.N. Alhajeri, and T.G. Langdon: Mater. Sci. Eng. A, 2015, vol. 641, p. 21-28.

    Article  Google Scholar 

  34. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Scripta Mater., 2010, vol. 63, p. 560-63.

    Article  Google Scholar 

  35. K. Edalati, T. Fujioka, and Z. Horita: Mater. Sci. Eng. A, 2008, vol. 497, p. 168-73.

    Article  Google Scholar 

  36. A. Hohenwarter and R. Pippan: Mater. Sci. Eng. A, 2012, vol. 540, p. 89-96.

    Article  Google Scholar 

  37. G.B. Rathmayr and R. Pippan: Acta Mater., 2011, vol. 59, p. 7228-40.

    Article  Google Scholar 

Download references

Acknowledgments

Funding of this work was provided by the European Research Council under ERC Grant Agreement No. 340185 USMS. The authors also thank A. Leitner and V. Maier-Kiener for the indispensable support with the nanoindentation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hohenwarter.

Additional information

Manuscript submitted April 16, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohenwarter, A., Pippan, R. Sample Size and Strain-Rate-Sensitivity Effects on the Homogeneity of High-Pressure Torsion Deformed Disks. Metall Mater Trans A 50, 601–608 (2019). https://doi.org/10.1007/s11661-018-4989-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4989-1

Navigation