Skip to main content
Log in

Orientation-Dependent Developments in Misorientation and Residual Stress in Rolled Aluminum: The Defining Role of Dislocation Interactions

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Orientation-dependent developments in misorientation and residual stress, in rolled aluminum, were quantified experimentally and simulated numerically. The latter involved analysis using a crystal plasticity finite element model, accounting for anisotropies in slip system hardening but neglecting near-neighbor interactions, and discrete dislocation dynamics of the single crystals. Both were successful in capturing the experimental patterns of orientation dependence. Numerical simulations, without slip transfer across the neighboring grains, thus established the defining role of dislocation interactions in establishing orientation-sensitive microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. FJ Humphreys and M Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon Materials Series, Elsevier, Oxford, 2004.

    Google Scholar 

  2. B Verlinden, J Driver, I Samajdar and RD Doherty: Thermo-Mechanical Processing of Metallic Materials, 1st ed., Pergamon Materials Series, Elsevier, Oxford, 2007.

    Google Scholar 

  3. N Hansen, X Huang and G Winther: Mater. Sci. Eng., A, 2008, vol. 494, pp. 61-67.

    Article  Google Scholar 

  4. A. Lodh, T. N. Tak, A. Prakash, P. J. Guruprasad, C. Hutchinson and I. Samajdar: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 5317-31.

    Article  Google Scholar 

  5. C.C. Merriman, D.P. Field and P. Trivedi: Mater. Sci. Eng., A, 2008, vol. 494, pp. 28-35.

    Article  Google Scholar 

  6. LP Kubin and G Canova, Scr. Metall. et Mater. 1992, vol. 27, pp. 957-62.

    Article  CAS  Google Scholar 

  7. LP Kubin, G Canova, M Condat, B Devincre, V Pontikis and Y Bréchet: Solid State Phenomenon, Trans Tech Publ, Switzerland, 1992, pp 455-72.

    Google Scholar 

  8. H M Zbib, M Rhee and JP Hirth: Int. J. Mech. Sci., 1998, vol. 40, pp. 113-27.

    Article  Google Scholar 

  9. L. Anand and M. Kothari, J. Mech. Phys. Solids 1996, vol. 44, pp. 525-58.

    Article  CAS  Google Scholar 

  10. D. Peirce, R. J. Asaro and A. Needleman, Acta Metall. 1982, vol. 30, pp. 1087-1119.

    Article  CAS  Google Scholar 

  11. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler and D. Raabe, Acta Mater., 2010, vol. 58, pp. 1152-11

    Article  CAS  Google Scholar 

  12. EB Marin and PR Dawson, Comput. Methods Appl. Mech. Eng. 1998, vol. 165, pp. 1-21.

    Article  Google Scholar 

  13. E.B. Marin, On the formulation of a crystal plasticity model, 2006. https://doi.org/10.2172/890604.

  14. Benoît Devincre, Ladislas Kubin and Thierry Hoc, Scripta Mater. 2006, vol. 54, pp. 741-46.

    Article  CAS  Google Scholar 

  15. P Shanthraj and MA Zikry, Acta Mater. 2011, vol. 59, pp. 7695-7702.

    Article  CAS  Google Scholar 

  16. T. Ungár, A. D. Stoica, G. Tichy and X.-L. Wang: Acta Mater., 2014, vol. 66, pp. 251-61

    Article  Google Scholar 

  17. Halle Abrams, Metallography 1971, vol. 4, pp. 59-78.

    Article  Google Scholar 

  18. A. Alankar, I.N. Mastorakos and D.P. Field: Acta Mater., 2009, vol. 57, pp. 5936-46

    Article  CAS  Google Scholar 

  19. A. Arsenlis and D.M. Parks: J. Mech. Phys. Solids, 2002, vol. 50, pp. 1979-2009.

    Article  CAS  Google Scholar 

  20. N Bertin, CN Tomé, IJ Beyerlein, MR Barnett and L Capolungo, Int. J. Plast. 2014, vol. 62, pp. 72-92.

    Article  CAS  Google Scholar 

  21. M. Khadyko, S. Dumoulin, G. Cailletaud and O. S. Hopperstad: Int. J. Plast., 2016, vol. 76, pp. 51-74

    Article  CAS  Google Scholar 

  22. N. Keskar, S. Mukherjee, K.V.M. Krishna, D. Srivastava, G.K. Dey, P. Pant, R.D. Doherty and I. Samajdar: Acta Mater., 2014, vol. 69, pp. 265-74.

    Article  CAS  Google Scholar 

  23. O. Engler and V. Randle: Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC press, Boca Raton, 2009.

    Book  Google Scholar 

  24. Y. D. Wang, R. L. Peng and R. L. McGreevy: Philos. Mag. Lett., 2001, vol. 81, pp. 153-63.

    Article  CAS  Google Scholar 

  25. R. Hielscher and H. Schaeben: J. Appl. Crystallogr., 2008, vol. 41, pp. 1024-37.

    Article  CAS  Google Scholar 

  26. Niels Hansen, Xiaoxu Huang, Wolfgang Pantleon and Grethe Winther, Philos. Mag. 2006, vol. 86, pp. 3981-94.

    Article  CAS  Google Scholar 

  27. Xiao-xu Huang and Grethe Winther, Philos. Mag. 2007, vol. 87, pp. 5189-5214.

    Article  CAS  Google Scholar 

  28. J. Jiang, T. B. Britton and A. J. Wilkinson: Int. J. Plast., 2015, vol. 69, pp. 102-117

    Article  CAS  Google Scholar 

  29. JS Kallend and YC Huang, Metal Sci. 1984, vol. 18, pp. 381-86.

    Article  CAS  Google Scholar 

  30. N Rajmohan and JA Szpunar, Mater. Sci. Technol. 1999, vol. 15, pp. 1259-1265.

    Article  CAS  Google Scholar 

  31. D.D. Sam and B.L. Adams: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 513-17

    Article  Google Scholar 

  32. Y.D. Wang, R. L. Peng and R.L. McGreevy: Philos. Mag. Lett., 2001, vol. 81, pp. 153-63

    Article  CAS  Google Scholar 

  33. X. Feaugas and H. Haddou: Philos. Mag., 2007, vol. 87, pp. 989-1018.

    Article  CAS  Google Scholar 

  34. Erik Van der Giessen and Alan Needleman, Modell. Simul. Mater. Sci. Eng. 1995, vol. 3, p. 689.

    Article  Google Scholar 

  35. AA Benzerga, Y Bréchet, A Needleman and E Van der Giessen, Modell. Simul. Mater. Sci. Eng. 2003, vol. 12, p. 159.

    Article  Google Scholar 

  36. F. Roters, P. Eisenlohr, T. R. Bieler and D. Raabe: Crystal Plasticity Finite Element Methods: in Materials Science and Engineering, Wiley, New York, 2011.

    Google Scholar 

Download references

Several of the co-authors (AL, PJG, and IS) would like to acknowledge financial support from DST-SERB (India). Support from IITB-Monash Research Academy and National Facility of Texture and OIM (IITB) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alankar Alankar.

Additional information

Manuscript submitted August 13, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodh, A., Tewary, U., Singh, R.P. et al. Orientation-Dependent Developments in Misorientation and Residual Stress in Rolled Aluminum: The Defining Role of Dislocation Interactions. Metall Mater Trans A 49, 5946–5952 (2018). https://doi.org/10.1007/s11661-018-4964-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4964-x

Navigation