Skip to main content
Log in

Characterization of a Continuously Cooled Dual-Phase Steel Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Continuous-cooling transformation behavior of a DP steel was analyzed from dilation curves with cooling rates that range between 10 °C/s and 98 °C/s and data taken in 10 °C/s increments. For a precise understanding of the problem, several metallographic techniques were used in order to determine which phases and types of transformation are present, the grain structure and crystal defects generated for each cooling rate, among other characteristics. The local distribution of the main alloying elements was analyzed by wave dispersive spectroscopy. From the dilation curves, the relative amount of transformed phase was estimated, as well as the first derivatives as a function of both temperature and time to analyze the characteristics of the transformation and correlate these with a characteristic microstructure. To further understand these results, the mobility of suitable alloying elements such as Cr, Mn, Al, and P was evaluated. The analysis showed that at lower cooling rates, 10 °C/s to 20 °C/s, the transformation occurs at temperatures above 700 °C (at which the majority of alloying atoms have good mobility) in a relatively slow process producing polygonal ferrite. At cooling rates greater than 40 °C/s, the transformation occurs below 700 °C in a relatively short time, where massive transformation takes place. Finally, a cooling rate of 30 °C/s gives a mixed transformation, producing an appreciably smaller grain structure with a high density of crystal defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. G. Davis: Metall. Trans. A, 1979, vol. 10A pp. 113-18.

    Article  Google Scholar 

  2. M.H. Saleh, R. Piestner: J. Mat Proc Tech, 2001, vol 113, pp. 587-593.

    Article  CAS  Google Scholar 

  3. A. Fallahi: Mat. Sci. Tech., 2002, vol. 18-5, pp. 451-454.

    Google Scholar 

  4. M. Calcagnotto, D. Ponge, Y. Adachi, and D. Raabe: Effect of Grain Refinement on Strength and Ductility in Dual-Phase Steels. Proc. 2nd Int. Symp. Steel Sci. ISSS 2009 Oct 21–24, The Iron and Steel Institute of Japan, Kyoto, 2009.

  5. J. Drumond, O. Girina, J. F. da Silva Filho, N. Fonstein, C. A. S. de Oliveira (2012) Metallogr. Microstruct. Anal. 1: 217–223.

    Article  CAS  Google Scholar 

  6. L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, D. Mattissen: Acta Mater., 2015, vol. 95, pp. 386–398.

    Article  CAS  Google Scholar 

  7. Y. Granbom: Structure and Mechanical Properties of Dual-Phase Steels – An Experimental and Theoretical Analysis, PhD Thesis, Royal Institute of Technology School of Industrial Engineering and Management Materials Science and Engineering, Division of Mechanical Metallurgy, Stockholm, Sweden.

  8. W. Andrews: JISI, 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  9. D.L. Kaiser and J.R.L. Watters: Standard Reference Material ®, 2010, vol. 660b, pp. 721.

  10. H.M. Rietveld: J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71.

    Article  CAS  Google Scholar 

  11. L. Lutterotti, S.Matthies, H.-R.Wenk: J. Appl. Phys., 1997, vol 81, pp. 594-600.

    Article  CAS  Google Scholar 

  12. L. Lutterotti: Maud (Material Analysis Using Diffraction), 1997.

  13. J. S. Kirkaldy, D. Venugopalan: Phase Transformations in Ferrous Alloys, TMS-AIME, Warrendale, PA, 1984, p. 125-48.

    Google Scholar 

  14. C.Y. Kung and J.J. Rayment: Metall. Trans. A, 1982, vol. 13A, pp. 328-331.

    Article  CAS  Google Scholar 

  15. K. Tsuzaki, T. Maki: J. Phys., 1995, 5(C8), 61–70.

    CAS  Google Scholar 

  16. G. Vander Voort: Metallography Principles and Practice, 1st ed., McGraw Hill Inc, New York, NY, 1984, pp. 442–43.

    Google Scholar 

  17. M. Calcagnotto, D. Ponge, D. Raabe: ISIJ Int., 2012, vol. 52-5, pp. 874-883.

    Article  Google Scholar 

  18. F. S. Bufington, K. Hirano, M. Cohen: Acta Metall., 1961, vol. 9, pp. 434-439.

    Article  Google Scholar 

  19. C.G. Lee, Y. Iijima, T. Hiratani, K. Hirano: Mat. Trans. JIM, 1990, vol. 31-4, pp. 255-261.

    Article  Google Scholar 

  20. T. Matsuyama, H. Hosokawa, H. Suto: Trans. Japan Institute of Metals, 1983, vol. 24-8, pp. 589- 594.

    Article  Google Scholar 

  21. H. Oikawa: Iron and steel, 1982, vol. 68, 10, pp. 1489-97

    Article  CAS  Google Scholar 

  22. J. Fridberg, L.E. Torndahl and M. Hillert, Jernkont. Ann., 1969, vol. 153, pp. 263-76.

    CAS  Google Scholar 

  23. H. Amara, C. C. Fu, F. Soisson, P. Maugis: Physical Review B, 2010, vol 81, pp. 174101-1-174101-11.

    Article  Google Scholar 

  24. F. J. Bradshaw, G. Hoyle, K. Speigh. Diffusion of Silicon in Ferrite. Nature, 1953, vol. 171, pp. 488–88.

    Article  CAS  Google Scholar 

  25. C. Bos, F. Sommer, EJ Mittemeijer. An atomistic analysis of the interface mobility in a massive transformation. Acta Mater., 2005, vol. 53, pp. 5333–5341.

    Article  CAS  Google Scholar 

  26. F. Liu, S.J. Song, F. Sommer, E.J. Mittemeijer: Acta Mater. 2009, vol. 57, pp. 6176–6190.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Present work was supported by Agencia Nacional de Promoción Científica y Tecnológica under Grant Number PICT-2014-0341 and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) PIP-0426. The authors acknowledge Dr. Roberto Bruna TERNIUM SIDERAR for the donation of the DP steel. As well, the authors acknowledge Dr V. Fuster for the calculation in X-ray technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Farias.

Additional information

Manuscript submitted December 4, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, F., Balbi, M., Batista, M.N. et al. Characterization of a Continuously Cooled Dual-Phase Steel Microstructure. Metall Mater Trans A 49, 6010–6021 (2018). https://doi.org/10.1007/s11661-018-4954-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4954-z

Navigation