Skip to main content
Log in

The Role of Hydrogen on the Local Fracture Toughness Properties of 7XXX Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-resolution synchrotron X-ray microtomography has been successfully used to evaluate the local crack driving force at arbitrary crack tip locations as a form of CTOD. This is to our knowledge the first experimental evidence in supporting a correlation between the local fracture toughness associated with the corresponding hydrogen-assisted fracture mode including quasi-cleavage, intergranular, and dimple. Our results have revealed that very small CTOD, of about 1.26 μm, is observed when the crack tip is located in the quasi-cleavage fracture. Compared to quasi-cleavage fracture, the CTOD values increase by a factor of 5 when the crack tip is located in intergranular fracture mode and even greater increase in CTOD (of about 18 times) is observed when the crack tip is located in dimple fracture mode. We also observed that the crack propagation process under the influence of hydrogen deviates greatly from that of standard behavior, where stable crack growth is accompanied by a change in crack tip singularity from the HRR to the RDS. It was concluded that the presence of high concentration of hydrogen ahead of the crack tip increases the slip localization, and thereby reduces crack tip blunting. Hence crack continues to grow before the crack tip becomes fully blunt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Wang: Corros. Sci., 2009, vol. 51, pp. 2803–10.

    Article  CAS  Google Scholar 

  2. J Sojka, V. Vodarek, I Schindler, A. Wenglorzová: Corros. Sci., 2011, vol. 53(8), pp. 2575–2581.

    Article  CAS  Google Scholar 

  3. C.S. Marchi, T. Michler, K.A. Nibur, B.P. Somerday: Int. J. Hydrogen Energy., 2010, vol. 35, pp. 9736–9745.

    Article  Google Scholar 

  4. D.F. Teter, I.M. Robertson, H.K. Birnbaum: Acta. Mater., 2001, vol. 49, pp. 4313–4323.

    Article  CAS  Google Scholar 

  5. Q. Liu, M. Zhang, Q. Zhou, A. Atrens: Corros. Sci., 2015, vol. 99, pp. 98–117.

    Article  Google Scholar 

  6. M. Hatano, M. Fujinami, K. Arai, H. Fujii, M. Nagumo: Acta Mater., 2014, vol. 67, pp. 342–353.

    Article  CAS  Google Scholar 

  7. G. Wang, Y. Yan, J. Li, J. Huang, L. Qiao, A.A. Volinsky: Mater. Sci. Eng. A., 2013, vol. 586, pp. 142–148.

    Article  CAS  Google Scholar 

  8. P. Sofronis, H.K. Birnbaum: J. Mech. Phys. Solids., 1995, vol. 43, pp. 49–90.

    Article  Google Scholar 

  9. D. Delafosse, J.-P. Chateau, A. Chambreuil, T. Magnin: Mater. Sci. Eng. A., 1997, vol. 234–236, pp. 889–892.

    Article  Google Scholar 

  10. A.H.M. Krom, R.W.J. Koers, A. Bakker: J. Mech. Phys. Solids., 1999, vol. 47, pp. 971–992.

    Article  CAS  Google Scholar 

  11. J. Lufrano, P. Sofronis, D. Symons: Eng. Fract. Mech., 1998, vol. 59, pp.827–845.

    Article  Google Scholar 

  12. S. Wang, M.L. Martin, P. Sofronis, S. Ohnuki, N. Hashimoto, I.M. Robertson: Acta Mater., 2014, vol. 69, pp. 275–282.

    Article  CAS  Google Scholar 

  13. M. Wang, E Akiyama, K Tsuzaki: Corros. Sci., 2007, vol. 49 (11), pp. 4081–4097.

    Article  CAS  Google Scholar 

  14. Q. Liu, B. Irwanto, A. Atrens:Mater. Sci. Eng. A, 2014, vol. 617, pp. 200-210.

    Article  CAS  Google Scholar 

  15. R.P. Gangloff and B.P. Somerday (eds.): Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, Cambridge, 2012.

  16. J. Albrecht, A.W. Thompson, I.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1759-1766.

    Article  CAS  Google Scholar 

  17. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp.861-890.

    Article  CAS  Google Scholar 

  18. D. Nguyen, A.W. Thompson, I.M. Bernstein: Acta Metall., 1987, vol. 35, pp. 2417–2425.

    Article  CAS  Google Scholar 

  19. R.J. Gest, A.R. Troiano: Corrosion., 1974, vol. 30, pp. 274–279.

    Article  CAS  Google Scholar 

  20. J.R. Pickens, J.R. Gordon, J.A.S. Green: Metall. Mater. Trans. A., 1983, vol. 14, pp. 925–930.

    Article  Google Scholar 

  21. D.C. Ahn, P. Sofronis, R.H. Dodds Jr: Int. J. Hydrog. Energy, 2007, vol. 32, pp. 3734–3742.

    Article  CAS  Google Scholar 

  22. R.A. Oriani, P.H. Josephic: Acta Mater., 1977, vol. 25, pp. 979–988.

    Article  CAS  Google Scholar 

  23. H.K. Birnbaum, P. Sofronis: Mater. Sci. Eng. A., 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  24. H. Toda, S. Yamamoto, M. Kobayashi, K. Uesugi, H. Zhang: Acta Mater., 2008, vol. 56, pp. 6027–6039.

    Article  CAS  Google Scholar 

  25. S. Bhuiyan, Y. Tada, H. Toda, S. Hang, K. Uesugi, A. Takeuchi, N. Sakaguchi: Int. J. Fract., 2016, vol. 200 (1-2), pp. 13–29.

    Article  CAS  Google Scholar 

  26. M. Kobayashi, H. Toda, Y. Kawai, T. Ohgaki, K. Uesugi: Acta Mater., 2008, vol. 56, pp. 2167–2181.

    Article  CAS  Google Scholar 

  27. H. Toda, E. Maire, Y. Aoki, M. Kobayashi: J. Strain Analysis, 2011, vol. 46, pp. 549-561.

    Article  Google Scholar 

  28. R.O. Ritchie, A.W. Thompson: Metall. Mater. Trans. A., 1985, vol. 16, pp. 233–248.

    Article  CAS  Google Scholar 

  29. H. Toda, E. Maire, S. Yamauchi, H. Tsuruta, T. Hiramatsu, M. Kobayashi: Acta Mater., 2011, vol. 59, pp. 1995–2008.

    Article  CAS  Google Scholar 

  30. J.R. Rice, W.J. Drugan and T.L. Sham: ASTM STP 700, American Society for Testing and Materials, Philadelphia, PA, 1980, pp. 189–221.

  31. W.J. Drugan, J.R. Rice, T.L. Sham, J. Mech. Phys. Solids, 1982, vol. 30 (6), pp. 447-473.

    Article  Google Scholar 

  32. K.S. Chan: Metall. Mater. Trans. A, 1990, vol. 21, pp. 81-86.

    Article  CAS  Google Scholar 

  33. Y.H. Chiao, D.R. Clarke: Acta Metall., 1989, 37, pp. 203–219.

    Article  CAS  Google Scholar 

  34. G.J. Dienes, A. Paskin: J. Phys. Chem. Solids, 1987, vol. 48, pp. 1015–1033.

    Article  Google Scholar 

  35. A. Paskin, B. Massoumzadeh, K. Shukla, K. Sieradzki: Acta Metall., 1985, vol. 33, pp. 1987–1996.

    Article  Google Scholar 

  36. T. Zhu, W. Yang, T. Guo: Acta Mater., 1996, vol. 44, pp. 3049–3058.

    Article  CAS  Google Scholar 

  37. P. Sofronis, R.M. McMeeking: J. Mech. Phys. Solids., 1989, vol. 37, pp. 317–350.

    Article  Google Scholar 

  38. J. Lufrano, P. Sofronis, H.K. Birnbaum: J. Mech. Phys. Solids., 1996, vol. 44, pp. 179–205.

    Article  CAS  Google Scholar 

  39. P. Sofronis, J. Lufrano: Mater. Sci. Eng. A., 1999, vol. 260, pp. 41–47.

    Article  Google Scholar 

  40. P. Sofronis: J. Mech. Phys. Solids., 1995, vol. 43, pp. 1385–1407.

    Article  CAS  Google Scholar 

  41. R. Matsumoto, S. Taketomi, S. Matsumoto, N. Miyazaki: Int. J. Hydrogen Energy., 2009, vol. 34, pp. 9576–9584.

    Article  CAS  Google Scholar 

  42. P.J. Ferreira, I.M. Robertson, H.K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991–2998.

    Article  CAS  Google Scholar 

  43. D.P. Abraham, C.J. Altstetter: Matall. Mater. Trans. A, 1995, vol. 26, pp. 2859-2871.

    Article  CAS  Google Scholar 

  44. S. Jani, M. Marek, R.F. Hochman, E.I. Meletis, Metall. Trans. A., 1991, vol. 22, pp. 1453-1461.

    Article  CAS  Google Scholar 

  45. S.P. Lynch: Acta. Metall., 1988, vol. 36, pp. 2639–2661.

    Article  CAS  Google Scholar 

  46. S.P. Lynch: Acta Metall., 1984, vol. 32, pp. 79–90.

    Article  CAS  Google Scholar 

  47. M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, I.M. Robertson: J. Mech. Phys. Solids., 2015, vol. 78, pp. 511–525.

    Article  CAS  Google Scholar 

  48. J.K. Tien, R.J. Richards, O. Buck, H.L. Marcus: Scr. Met., 1975, vol. 9, pp. 1097–1101.

    Article  Google Scholar 

  49. J. Tien, A.W. Thompson, I.M. Bernstein: Mater. Trans. A., 1976, vol. 7, pp. 1–9.

    Google Scholar 

  50. M.L. Martin, J.A. Fenske, G.S. Liu, P. Sofronis, I.M. Robertson: Acta Mater., 2011, vol. 59, pp. 1601–1606.

    Article  CAS  Google Scholar 

  51. A. Nagao, C.D. Smith, M. Dadfarnia, P. Sofronis, I.M. Robertson: Procedia Mater. Sci., 2014, vol. 3, pp. 1700–1705.

    Article  CAS  Google Scholar 

  52. A. Nagao, M.L. Martin, M. Dadfarnia, P. Sofronis, I.M. Robertson: Acta Mater., 2014, vol. 74, pp. 244–254.

    Article  CAS  Google Scholar 

  53. T. Neeraj, R. Srinivasan, J. Li, Acta. Mater., 2011, vol. 60, pp. 5160–5171.

    Article  Google Scholar 

  54. S. Li, Y. Li, Y.C. Lo, T. Neeraj, R. Srinivasan, X. Ding: Int. J. Plast., 2015, vol. 74, pp. 175–191.

    Article  CAS  Google Scholar 

  55. P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, R.O. Ritchie: J. Mech. Phys. Solids., 2010, vol. 58, pp. 206–226.

    Article  CAS  Google Scholar 

  56. T. Izumi, G. Itoh: Mater. Trans:Jpn. Inst. Met., 2011, vol. 52, pp. 130–134.

    CAS  Google Scholar 

  57. E.K. Gang Lu: Phys. Rev. Lett., 2005, vol. 94, pp. 155501.

    Article  Google Scholar 

  58. G. Lu, Q. Zhang, N. Kioussis, E. Kaxiras: Phys. Rev. Lett., 2001, vol. 87, pp. 098801–098804.

    Google Scholar 

  59. I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, K.E. Nygren: Mater. Trans., 2015, vol. 46, pp. 2323–2341.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The synchrotron radiation experiments were performed with the approval of JASRI through Proposal No.2013B1324, 2014A1018, and 2014B1157. This work was undertaken as a part of Development of Innovative Aluminum Materials Projects and Technological Development of Innovative New Structural Materials with the Project Code HAJJ262715. The authors also appreciate the financial assistance of the Light Metals Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahnewaz Bhuiyan.

Additional information

Manuscript submitted October 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuiyan, M.S., Toda, H., Shimizu, K. et al. The Role of Hydrogen on the Local Fracture Toughness Properties of 7XXX Aluminum Alloys. Metall Mater Trans A 49, 5368–5381 (2018). https://doi.org/10.1007/s11661-018-4880-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4880-0

Navigation