Skip to main content

Advertisement

Log in

First-Principles Modeling of the Temperature Dependence for the Superlattice Intrinsic Stacking Fault Energies in L1\(_2\) Ni\(_{75-x}\)X\(_x\)Al\(_{25}\) Alloys

  • Topical Collection: Superalloys and Their Applications
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Stronger and more resistant alloys are required in order to increase the performance and efficiency of jet engines and gas turbines. This will eventually require planar faults engineering, or a complete understanding of the effects of composition and temperature on the various planar faults that arise as a result of shearing of the \(\gamma ^\prime \) precipitates. In the current study, a combined scheme consisting of the density functional theory, the quasi-harmonic Debye model, and the axial Ising model, in conjunction with a quasistatic approach is used to assess the effects of composition and temperature of a series of pseudo-binary alloys based on the \(({\mathrm{Ni}}_{75-x}{\mathrm{X}}_{x}){\mathrm{Al}}_{25}\) system using distinct relaxation schemes to assess observed differences. Our calculations reveal that the (111) superlattice intrinsic stacking fault energies in these systems decline modestly with temperature between \(0\,\)K and \(1000\,\)K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.M.F. Rae and R.C. Reed.: Acta Mater. 55(3):1067–81 (2007). https://doi.org/10.1016/j.actamat.2006.09.026.

    Article  Google Scholar 

  2. L. Vitos, J. O. Nilsson and B. Johansson: Acta Mater. 54:3821–26 (2006). https://doi.org/10.1016/j.actamat.2006.04.013.

    Article  Google Scholar 

  3. Y. Qi and R. K. Mishra: Phys. Rev. B, 75:224105–10, 2007. https://doi.org/10.1103/physrevb.75.224105.

    Article  Google Scholar 

  4. C. B. Carter and S. M. Holmes: Philos. Mag., 35:1161–72, 1977. https://doi.org/10.1080/14786437708232942.

    Article  Google Scholar 

  5. H. Suzuki: J. Phys. Soc. Jpn., 17:322--25, 1962. https://doi.org/10.1143/jpsj.17.322.

    Article  Google Scholar 

  6. V. A. Vorontsov, L. Kovarik, M. J. Mills, and C. M. F. Rae: Acta Mater., 60(12):4866–78, 2012. https://doi.org/10.1016/j.actamat.2012.05.014.

    Article  Google Scholar 

  7. G. B. Viswanathan, R. Shi, A. Genc, V. A. Vorontsov, L. Kovarik, C. M. F. Rae, and M. J. Mills: Scripta Mater., 94:5–8, 2015. https://doi.org/10.1016/j.scriptamat.2014.06.032.

    Article  Google Scholar 

  8. K. V. Vamsi and S. Karthikeyan: in Superalloys 2012, pp. 521--530. Wiley (2012). https://doi.org/10.1016/j.scriptamat.2015.02.020.

    Article  Google Scholar 

  9. K. V. Vamsi and S. Karthikeyan: in Superalloys 2012. Wiley, 2012, pp. 521–30. https://doi.org/10.1002/9781118516430.ch57.

  10. P.J.H. Denteneer and W. van Haeringen: J. Phys. C, 20(32):L883, 1987.

    Article  Google Scholar 

  11. A. Breidi, J. Allen, and A. Mottura: Acta Mater., 145:97–108, 2018. https://doi.org/10.1016/j.actamat.2017.11.042.

    Article  Google Scholar 

  12. A. Breidi, J. Allen, and A. Mottura: Phys. Status Solidi (b), 2017. https://doi.org/10.1002/pssb.201600839.

    Google Scholar 

  13. M.A. Blanco, E. Francisco, and V. Luaña.: Comput. Phys. Commun., 158(1):57–72, 2004. https://doi.org/10.1016/j.comphy.2003.12.001.

    Article  Google Scholar 

  14. Y. Mishima, S. Ochiai, and T. Suzuki: Acta Metall., 33(6):1161–69, 1985. https://doi.org/10.1016/0001-6160(85)90211-1.

    Article  Google Scholar 

  15. A. V. Ruban, V.A. Popov, V.K. Portnoi, and V.I. Bogdanov. Philos. Mag., 94(1):20--34, 2014. https://doi.org/10.1080/14786435.2013.838647.

    Article  Google Scholar 

  16. C. Jiang and B. Gleeson: Scripta Mater., 55(5):433–36, 2006. https://doi.org/10.1016/j.scriptamat.2006.05.016.

    Article  Google Scholar 

  17. A. V. Ruban and H. L. Skriver: Phys. Rev. B, 55:856–74, 1997. https://doi.org/10.1103/physrevb.55.856.

    Article  Google Scholar 

  18. J. M. Cowley: J. Appl. Phys., 21(1):24–30, 1950. https://doi.org/10.1063/1.1699415.

    Article  Google Scholar 

  19. B. E. Warren: X-ray Diffraction. New York, Dover, 1990.

    Google Scholar 

  20. P. Hohenberg and W. Kohn.: Phys. Rev., 136(3B):B864–71, 1964. https://doi.org/10.1103/physrev.136.b864.

    Article  Google Scholar 

  21. W. Kohn and L. J. Sham.: Phys. Rev., 140(4A):A1133–38, 1965. https://doi.org/10.1103/physrev.140.a1133.

    Article  Google Scholar 

  22. G. Kresse and D. Joubert.: Phys. Rev. B, 59:1758–1775, 1999. https://doi.org/10.1103/physrevb.59.1758.

    Article  Google Scholar 

  23. G. Kresse and J. Furthmüller.: Comput. Mater. Sci., 6(1):15–50, 1996. https://doi.org/10.1016/0927-0256(96)00008-0.

    Article  Google Scholar 

  24. P. E. Blöchl: Phys. Rev. B, 50:17953–79, 1994. https://doi.org/10.1103/physrevb.50.17953.

    Article  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof.: Phys. Rev. Lett., 77(18):3865–68, 1996. https://doi.org/10.1103/physrevlett.77.3865.

    Article  Google Scholar 

  26. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery: Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge University Press, Cambridge, 2007. ISBN 9780521880688.

  27. C. A. Swenson: J. Phys. Chem. Solids, 29(8):1337–48, 1968. https://doi.org/10.1016/0022-3697(68)90185-6.

    Article  Google Scholar 

  28. E. F. Wasserman: in Handbook of Ferromagnetic Materials, Handbook of Ferromagnetic Materials, vol. 5. Elsevier, 1990, pp. 237–322. https://doi.org/10.1016/s1574-9304(05)80063-x.

  29. O.L. Anderson and D.G. Isaak: Elastic Constants of Mantle Minerals at High Temperature. American Geophysical Union, 2013, pp. 64–97. ISBN 9781118668191. https://doi.org/10.1029/rf002p0064.

  30. Y. Wang, J. J. Wang, H. Zhang, V. R. Manga, S. L. Shang, L.-Q. Chen, and Z.-K. Liu: J. Phys., 2010, vol. 22(22), art. no. 225404.

  31. S.-L. Shang, H. Zhang, Y. Wang, and Z.-K. Liu: J. Phys., 2010, vol. 22(37), art. no. 375403.

  32. O. Gülseren and R. E. Cohen.: Phys. Rev. B, 2002, vol. 65, art. no. 064103, https://doi.org/10.1103/physrevb.65.064103.

  33. I. Bleskov, T. Hickel, J. Neugebauer, and A. Ruban.: Phys. Rev. B, 2016, vol. 93, art. no. 214115, https://doi.org/10.1103/physrevb.93.214115.

  34. V. I. Razumovskiy, A. Reyes-Huamantinco, P. Puschnig, and A. V. Ruban.: Phys. Rev. B, 2016, vol. 93, art. no. 054111, https://doi.org/10.1103/physrevb.93.054111.

  35. C. Kittel: Introduction to Solid State Physics, 7th edition. Wiley, New York, 1996

    Google Scholar 

  36. Y.-K. Kim, D. Kim, H.-K. Kim, C.-S. Oh, and B.-J. Lee: Int. J. Plast., 79:153–175, 2016. https://doi.org/10.1016/j.ijplas.2015.12.008.

    Article  Google Scholar 

Download references

Acknowledgments

This study made use of these computational facilities: (a) the University of Birmingham’s BlueBEAR HPC service (http://www.birmingham.ac.uk/bear), (b) MidPlus Regional HPC Center (www.hpc-midlands-plus.ac.uk), and (c) Beskow cluster (https://www.pdc.kth.se/hpc-services/computing-systems/beskow-1.737436). The authors are therefore very much grateful and would like to thank them for making this study possible. The authors would like, as well, to thank the EPSRC (Grant EP/M021874/1) and EU FP7 (Grant GA109937) for their financial support. Part of this study (A. Breidi) has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under the Grant Agreement No. 633053 and from the RCUK Energy Programme [Grant Number EP/P012450/1]. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Breidi.

Additional information

Manuscript submitted March 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allen, J.D.T., Mottura, A. & Breidi, A. First-Principles Modeling of the Temperature Dependence for the Superlattice Intrinsic Stacking Fault Energies in L1\(_2\) Ni\(_{75-x}\)X\(_x\)Al\(_{25}\) Alloys. Metall Mater Trans A 49, 4167–4172 (2018). https://doi.org/10.1007/s11661-018-4763-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4763-4

Navigation