Metallurgical and Materials Transactions A

, Volume 49, Issue 10, pp 4710–4721 | Cite as

Investigation of Macrosegregation Formation in Aluminium DC Casting for Different Alloy Systems

  • Akash Pakanati
  • Mohammed M’Hamdi
  • Hervé Combeau
  • Miha Založnik


Direct chill (DC) casting of aluminum involves alloys employing different solute elements. In this article, a qualitative analysis and comparison of macrosegregation formation is presented for three different alloy systems: Al-Mg, Al-Zn and Al-Cu. For this purpose, a multiphase, multiscale solidification model based on a volume-averaging method accounting for shrinkage-induced flow, thermal-solutal convection and grain motion is used and applied to an industrial-scale DC-cast ingot. The primary difference between these alloys is the thermal-solutal convection with Al-Mg having a competing thermal and solutal convection, whereas the other two systems have a cooperating thermal and solutal convection. In the study, the combined effect of the macrosegregation mechanisms is analyzed for each alloy to assess the role of the alloy system on the final macrosegregation.



This work is conducted within the framework of the PRIMAL project with support from Hydro, Alcoa, Aleris, the Research Council of Norway and NOTUR High Performance Computing program.


  1. 1.
    R. Nadella, D.G. Eskin, Q. Du, and L. Katgerman: Prog. Mater. Sci., 2008, vol. 53, pp. 421–80.CrossRefGoogle Scholar
  2. 2.
    A. V. Reddy and N.C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28, pp. 479–89.CrossRefGoogle Scholar
  3. 3.
    J. Ni and C. Beckermann: Metall. Trans. B-Process Metall., 1991, vol. 22, pp. 349–61.CrossRefGoogle Scholar
  4. 4.
    C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2754–64.CrossRefGoogle Scholar
  5. 5.
    C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2765–83.CrossRefGoogle Scholar
  6. 6.
    C.J. Vreeman, M.J.M. Krane, and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.CrossRefGoogle Scholar
  7. 7.
    C.J. Vreeman and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 687–704.CrossRefGoogle Scholar
  8. 8.
    A. Ludwig and M. Wu: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3673–83.CrossRefGoogle Scholar
  9. 9.
    A. Ludwig and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 109–14.CrossRefGoogle Scholar
  10. 10.
    M. Wu and A. Ludwig: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1465–75.CrossRefGoogle Scholar
  11. 11.
    M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–5631.CrossRefGoogle Scholar
  12. 12.
    M. Založnik and H. Combeau: Comput. Mater. Sci., 2010, vol. 48, pp. 1–10.CrossRefGoogle Scholar
  13. 13.
    M. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci., 2010, vol. 50, pp. 32–42.CrossRefGoogle Scholar
  14. 14.
    K.O. Tveito, A. Pakanati, M.M. Hamdi, H. Combeau, and M. Založnik: Metall. Mater. Trans. A.
  15. 15.
    D.G. Eskin, Q. Du, and L. Katgerman: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1206–12.CrossRefGoogle Scholar
  16. 16.
    M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz: Adv. Eng. Mater., 2011, vol. 13, pp. 570–80.CrossRefGoogle Scholar
  17. 17.
    M. Založnik, A. Kumar, H. Combeau, M. Bedel, P. Jarry, and E. Waz: Essent. Read. Light Met. Cast Shop Alum. Prod., 2013, vol. 3, pp. 848–53.CrossRefGoogle Scholar
  18. 18.
    M. Bedel: PhD Theses Université de Lorraine, Nancy, France, 2014.Google Scholar
  19. 19.
    L. Heyvaert: PhD Thesis, Université de Lorraine, Nancy, France, 2015.Google Scholar
  20. 20.
    M. Bedel, L. Heyvaert, M. Založnik, H. Combeau, D. Daloz, and G. Lesoult: IOP Conf. Ser. Mater. Sci. Eng.
  21. 21.
    H. Combeau, M. Založnik, and M. Bedel: Jom, 2016, vol. 68, pp. 2198–206.CrossRefGoogle Scholar
  22. 22.
    L. Heyvaert, M. Bedel, M. Založnik, and H. Combeau: Metall. Mater. Trans. A, 2017, vol. 48, pp. 4713–34.CrossRefGoogle Scholar
  23. 23.
    A. Pakanati, K.O. Tveito, M. M’Hamdi, H. Combeau, and M. Založnik: in Light Metals 2018, 2018, pp. 1089–96.Google Scholar
  24. 24.
    K.O. Tveito, M. Bedel, M. Založnik, H. Combeau, M. M’Hamdi, A. Kumar, and P. Dutta: IOP Conf. Ser. Mater. Sci. Eng., 2012, vol. 33, p. 012089.CrossRefGoogle Scholar
  25. 25.
    T. Jalanti: PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Laussanne, Switzerland, 2000.Google Scholar
  26. 26.
    A.L. Greer, A.M. Bunn, A. Tronche, P. V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.CrossRefGoogle Scholar
  27. 27.
    D. Weckman and P. Niessen: Metall. Trans. B, 1982, vol. 13, pp. 593–602.CrossRefGoogle Scholar
  28. 28.
    A. Tronche: PhD Thesis, University of Cambridge, Cambridge, England, 2000.Google Scholar
  29. 29.
    H. Combeau, M. Založnik, S. Hans, and P.E. Richy: Metall. Mater. Trans. B, 2009, vol. 40, pp. 289–304.CrossRefGoogle Scholar
  30. 30.
    T. Chandrashekar, M.K. Muralidhara, K.T. Kashyap, and P.R. Rao: Int. J. Adv. Manuf. Technol., 2009, vol. 40, pp. 234–41.CrossRefGoogle Scholar
  31. 31.
    D.G. Eskin, J. Zuidema, V.I. Savran, and L. Katgerman: Mater. Sci. Eng. A, 2004, vol. 384, pp. 232–44.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Akash Pakanati
    • 1
  • Mohammed M’Hamdi
    • 1
    • 2
  • Hervé Combeau
    • 3
    • 4
  • Miha Založnik
    • 3
    • 4
  1. 1.Department of Materials TechnologyNTNUTrondheimNorway
  2. 2.SINTEF Materials and ChemistryOsloNorway
  3. 3.Institut Jean LamourCNRS – Université de LorraineNancyFrance
  4. 4.Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (‘DAMAS’)Université de LorraineLorraineFrance

Personalised recommendations