Skip to main content
Log in

Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Diffusion coefficients of seven binary systems (Ti-Mo, Ti-Nb, Ti-Ta, Ti-Zr, Zr-Mo, Zr-Nb, and Zr-Ta) at 1200 °C, 1000 °C, and 800 °C were experimentally determined using three Ti-Mo-Nb-Ta-Zr diffusion multiples. Electron probe microanalysis (EPMA) was performed to collect concentration profiles at the binary diffusion regions. Forward simulation analysis (FSA) was then applied to extract both impurity and interdiffusion coefficients in Ti-rich and Zr-rich part of the bcc phase. Excellent agreements between our results and most of the literature data validate the high-throughput approach combining FSA with diffusion multiples to obtain a large amount of systematic diffusion data, which will help establish the diffusion (mobility) databases for the design and development of biomedical and structural Ti alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Kurtz: J. Bone Jt. Surg., 2007, vol. 89, p. 780.

    Google Scholar 

  2. Q. Chen and G.A. Thouas: Mater. Sci. Eng. R Reports, 2015, vol. 87, pp. 1–57.

    Article  Google Scholar 

  3. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2009, vol. 54, pp. 397–425.

    Article  Google Scholar 

  4. M. Niinomi: Sci. Technol. Adv. Mater., 2003, vol. 4, pp. 445–54.

    Article  Google Scholar 

  5. V. Brailovski, S. Prokoshkin, M. Gauthier, K. Inaekyan, S. Dubinskiy, M. Petrzhik, and M. Filonov: Mater. Sci. Eng. C, 2011, vol. 31, pp. 643–57.

    Article  Google Scholar 

  6. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3137–44.

    Article  Google Scholar 

  7. Y.L. Hao, S.J. Li, S.Y. Sun, C.Y. Zheng, and R. Yang: Acta Biomater., 2007, vol. 3, pp. 277–86.

    Article  Google Scholar 

  8. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Mori, and H. Nakajima: Acta Mater., 2010, vol. 58, pp. 6790–8.

    Article  Google Scholar 

  9. M. Niinomi, M. Nakai, J. Hieda, X. Zhao, and X. Zhao: Biomater. Sci. Process. Prop. Appl. II Ceram. Trans. (R. Narayan, S. Bose, A. Bandyopadhyay, eds.), 2012, vol. 237, pp. 65–78.

  10. C. Marker, S.L. Shang, J.-C. Zhao, and Z.K. Liu: Comput. Mater. Sci., 2018, vol. 142, pp. 215–26.

    Article  Google Scholar 

  11. C. Marker, S.L. Shang, J.-C. Zhao, and Z.K. Liu: Comput. Mater. Sci., 2017, vol. 140, pp. 121–39.

    Article  Google Scholar 

  12. C. Marker, S.-L. Shang, J.-C. Zhao, and Z.-K. Liu: Calphad, 2018, vol. 61, pp. 72–84.

    Article  Google Scholar 

  13. J.-C. Zhao: Prog. Mater. Sci., 2006, vol. 51, pp. 557–631.

    Article  Google Scholar 

  14. J.-C. Zhao: J. Mater. Res., 2001, vol. 16, pp. 1565–78.

    Article  Google Scholar 

  15. J.-C. Zhao, M.R. Jackson, L. a. Peluso, and L.N. Brewer: MRS Bull., 2002, vol. 27, pp. 324–9.

    Article  Google Scholar 

  16. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J.-C. Zhao: Nat. Mater., 2004, vol. 3, pp. 298–301.

    Article  Google Scholar 

  17. X. Zheng, D.G. Cahill, R. Weaver, and J.-C. Zhao: J. Appl. Phys., 2008, vol. 104, p. 73509.

    Article  Google Scholar 

  18. J.-C. Zhao, X. Zheng, and D.G. Cahill: Scr. Mater., 2012, vol. 66, pp. 935–8.

    Article  Google Scholar 

  19. C. Wei, X. Zheng, D.G. Cahill, and J.-C. Zhao: Rev. Sci. Instrum., 2013, vol. 84, p. 71301.

    Article  Google Scholar 

  20. X. Du and J.-C. Zhao: npj Comput. Mater., 2017, vol. 3, p. 17.

    Article  Google Scholar 

  21. D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  Google Scholar 

  22. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Intermetallics, 2011, vol. 19, pp. 698–706.

    Article  Google Scholar 

  23. O.N. Senkov, S. V. Senkova, C. Woodward, and D.B. Miracle: Acta Mater., 2013, vol. 61, pp. 1545–57.

    Article  Google Scholar 

  24. Q. Zhang and J.-C. Zhao: Intermetallics, 2013, vol. 34, pp. 132–41.

    Article  Google Scholar 

  25. Q. Zhang, Z. Chen, W. Zhong, and J.-C. Zhao: Scr. Mater., 2017, vol. 128, pp. 32–5.

    Article  Google Scholar 

  26. Q. Zhang and J.-C. Zhao: J. Alloys Compd., 2014, vol. 604, pp. 142–50.

    Article  Google Scholar 

  27. F. Sauer and V. Freise: Z. Elektrochem., 1962, vol. 66, pp. 353–62.

    Google Scholar 

  28. W. Zhong and J.-C. Zhao: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2017, vol. 48, pp. 5778–82.

    Article  Google Scholar 

  29. L. Zhu, C. Wei, H. Qi, L. Jiang, Z. Jin, and J.-C. Zhao: J. Alloys Compd., 2017, vol. 691, pp. 110–8.

    Article  Google Scholar 

  30. W. Zhong and J.-C. Zhao: Scr. Mater., 2017, vol. 127, pp. 92–6.

    Article  Google Scholar 

  31. H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Process, Springer, New York, 2007.

    Book  Google Scholar 

  32. G. Ghosh and M. Asta: Acta Mater., 2005, vol. 53, pp. 3225–52.

    Article  Google Scholar 

  33. G Neumann, C Tuijn (2011) Self-Diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, Elsevier, Amsterdam.

    Google Scholar 

  34. I. Thibon, D. Ansel, and T. Gloriant: J. Alloys Compd., 2009, vol. 470, pp. 127–33.

    Article  Google Scholar 

  35. A. Brunsch and S. Steeb: Zeitschrift für Naturforsch. A, 1974, vol. 29, pp. 473–81.

    Google Scholar 

  36. L. Feng, J. Li, L. Huang, H. Chang, Y.-W. Cui, and L. Zhou: Chinese J. Nonferrous Met., 2009, vol. 19, pp. 1766–71.

    Google Scholar 

  37. W. Sprengel, T. Yamada, and H. Nakajima: Defect Diffus. Forum, 1997, vol. 143–147, pp. 431–6.

    Article  Google Scholar 

  38. K. Majima and T. Isomoto: J. Jpn. Soc. Powder Met., 1982, vol. 29, pp. 18–23.

    Article  Google Scholar 

  39. T. Li, J.W. Morris, N. Nagasako, S. Kuramoto, and D.C. Chrzan: Phys. Rev. Lett., 2007, vol. 98, pp. 1–4.

    Google Scholar 

  40. V.M. Polyanskii, B.N. Podgorskii, and O.D. Makarovets: Svar Proizv., 1971, vol. 3, pp. 9–10.

    Google Scholar 

  41. V.I. Gryzunov, B.K. Aitbaev, G. Omasheva, and T.I. Fryzunova: Seriya Khimicheskaya, 1993, vol. 6, p. 29.

    Google Scholar 

  42. S.G. Fedotov, M.G. Chudinov, and K.M. Konstantinov: Fiz. Met. Met., 1969, vol. 27, pp. 873–6.

    Google Scholar 

  43. Y.E. Ugaste and Y.A. Zaykin: Fiz. Met. Met., 1975, vol. 40, pp. 567–75.

    Google Scholar 

  44. L.S. Darken: Trans. Am. Inst. Min. Met. Eng., 1948, vol. 175, pp. 184–294.

    Google Scholar 

  45. G.B. Gibbs, D. Graham, and D.H. Tomlin: Philos. Mag., 1963, vol. 8, pp. 1269–82.

    Article  Google Scholar 

  46. R. Peart, D.. H. Tomlin, R.F. Peartt, and D.. H. Tomlin: Acta Metall., 1962, vol. 10, pp. 123–34.

    Article  Google Scholar 

  47. D. Ansel, I. Thibon, M. Boliveau, and J. Debuigne: Acta Mater., 1998, vol. 46, pp. 423–30.

    Article  Google Scholar 

  48. ASM Alloy Phase Diagram Database.

  49. A PazPuente, J Dickson, DD Keiser, YH Sohn (2014) Int. J. Refract. Met. Hard Mater. 43:317–21.

    Article  Google Scholar 

  50. G.B. Fedorov and E.A. Smirnov: Diffus. React. Mater. Trans Tech Publ., 1984, p. 106.

  51. E.A. Balakir, Y.P. Zotov, E.B. Malysheva, and V.I. Panchishnyi: Izv. Vyss. Uchebnykh Zaved. Tsvetnaya Metall., 1975, vol. 2, pp. 126–8.

    Google Scholar 

Download references

Acknowledgments

All diffusion profile data produced in this study have been deposited to the NIST Materials Data Repository (http://hdl.handle.net/11256/602). The authors are thankful to Ms. Julie Chouinard for her help with EPMA performed at the CAMCOR Facilities of the University of Oregon. This study is supported by the U.S. National Science Foundation (NSF) under Grant number CMMI-1333999, and it is part of the NSF Designing Materials to Revolutionize and Engineer our Future (DMREF) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Cheng Zhao.

Additional information

Manuscript submitted December 5, 2017.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Liu, ZK. & Zhao, JC. Experimental Determination of Impurity and Interdiffusion Coefficients in Seven Ti and Zr Binary Systems Using Diffusion Multiples. Metall Mater Trans A 49, 3108–3116 (2018). https://doi.org/10.1007/s11661-018-4645-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4645-9

Navigation