Skip to main content
Log in

Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) nanoparticles (NP) and/or graphene nanoplatelets (GNP) were incorporated into the aluminum matrix through colloidal dispersion and mixing of the powders, followed by consolidation using a high-frequency induction heat sintering process. All the nanocomposite samples exhibited high densification (> 96 pct) with a maximum increase in Vickers microhardness by 92 pct relative to that of pure aluminum. The tribological properties of the samples were determined at the normal frictional forces of 10 and 50 N. At relatively low load of 10 N, the adhesive wear was found to be the predominant wear mechanism, whereas in the case of a 50 N normal load, there was significant contribution from abrasive wear possibly by hard SiC NP. From wear tests, the values for the coefficient of friction (COF) and the normalized wear rate were determined. The improvement in hardness and wear resistance may be attributed to multiple factors, including high relative density, uniform SiC and GNP dispersion in the aluminum matrix, grain refinement through GNP pinning, as well as inhibition of dislocation movement by SiC NP. The nanocomposite sample containing 10 SiC and 0.5 GNP (by wt pct) yielded the maximum wear resistance at 10 N normal load. Microstructural characterization of the nanocomposite surfaces and wear debris was performed using scanning electron microscope (SEM) and transmission electron microscope (TEM). The synergistic effect of the GNP and SiC nanostructures accounts for superior wear resistance in the aluminum matrix nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Chawla, and K.K. Chawla: Metal Matrix Composites, Springer, New York (2013).

    Book  Google Scholar 

  2. Rawal, S.: JOM, 2001, vol. 53(4), pp. 14-17.

    Article  Google Scholar 

  3. P. Stoyanov, D. Linsler, T. Schlarb, M. Scherg, R. Schwaiger: J. Mater. Sci., 2015, vol. 50, pp. 5524-32.

    Article  Google Scholar 

  4. M.O. Bodunrina, K.K. Alaneme, L.H. Chown: J. Mater. Res. Technol., 2015, vol. 4(4), pp. 434-45.

    Article  Google Scholar 

  5. K. Ma, E.J. Lavernia, J.M. Schoenung: Rev. Adv. Mater. Sci., 2017, vol. 48(2), pp. 91-104.

    Google Scholar 

  6. Z. Li, G. Fan, Q. Guo, Z. Li, Y. Su, D. Zhang: Carbon, 2015, vol. 95, 419-427.

    Article  Google Scholar 

  7. C.-L. Chen, C.-H. Lin: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 3687-3695.

    Article  Google Scholar 

  8. L. Xin, W. Yang, Q. Zhao, R. Dong, X. Liang, Z. Xiu, M. Hussain, G. Wu: Mater. Sci. Eng. A, 2017, vol. 682, pp. 38-44.

    Article  Google Scholar 

  9. Y. Uematsu, K. Tokaji, M. Kawamura: Compos. Sci. Technol., 2008, vol. 68, pp. 2785-91.

    Article  Google Scholar 

  10. S. Mahdavi, F. Akhlaghi: J. Mater. Sci., 2011, vol. 46, pp. 7883-94.

    Article  Google Scholar 

  11. Z.G. Wang, C.P. Li, H.Y. Wang, J.N. Zhu, C. Wang, Q.C. Jiang: J. Mater. Eng. Perform., 2017, vol. 26(2), 729-35.

    Article  Google Scholar 

  12. S. Zhang, F. Wang: J. Mater. Processing. Technol., 2007, vol. 182, pp. 122–27.

    Article  Google Scholar 

  13. K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis: Wear, 2004, vol. 256, pp. 1176-81.

    Article  Google Scholar 

  14. Gracio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Metall Mater Trans 44: 5259-69.

    Article  Google Scholar 

  15. A. Doraisamy and S. Thiagarajan: Adv. Tribol., 2014, vol. 273738, 8 pp.

  16. J. Wang, Z. Li, G. Fan, H. Pan, Z. Chen, D. Zhang: Scripta Mater., 2012, vol. 66, pp. 594-7.

    Article  Google Scholar 

  17. A. El-Ghazaly, G. Anis, H.G. Salem: Compos. A, 2017, vol. 95, pp. 325-36.

    Article  Google Scholar 

  18. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee: Mater. Sci. Eng., 2011, vol. 528(27), pp. 7933-37.

    Article  Google Scholar 

  19. T. Etter, P. Schulz, M. Weber, J. Metz, M. Wimmler, J.F. Loffler, P.J. Uggowitzer: Mater. Sci. Eng. A, 2007, vol. 448, pp. 1-6.

    Article  Google Scholar 

  20. T. Sritharan, L.S. Chan, L.K. Tan, N.P. Hung: Mater. Character., 2001, vol. 47, pp. 75-77.

    Article  Google Scholar 

  21. W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, M. Yu: Int. J. Miner. Metall. Mater., 2016, vol. 23(6), pp. 723-9.

    Article  Google Scholar 

  22. B. Hekner, J. Myalski, N. Valle, A.B. Probierz, M.S. Lizer, J. Wieczorek: Compos. B, 2017, vol. 108, pp. 291–300.

    Article  Google Scholar 

  23. A.F. Boostani, S. Yazdani, R.T. Mousavian, S. Tahamtanc, R.A. Khosroshahi, D. Wei, D. Brabazon, J.Z. Xu, X.M. Zhang, Z.Y. Jiang: Mater. Des., 2015, vol. 88, pp. 983-89.

    Article  Google Scholar 

  24. I. Ahmad, M. Islam, T. Subhani, and Y. Zhu: Nanotechnology, 2016, vol. 27(42), pp. 425704, 13 pp.

  25. I. Ahmad, M. Islam, H.S. Abdo, T. Subhani, K.A. Khalil, A.A. Almajid, B. Yazdani, Y. Zhu: Mater. Des., 2015, vol. 88, pp. 1234-43.

    Article  Google Scholar 

  26. S. Mahdavi, F. Akhlaghi: Tribol. Lett., 2011, vol. 44(1), pp. 1-12.

    Article  Google Scholar 

  27. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M.H. Alonso, D.H. Adamson, I.A. Aksay: J. Phys. Chem. B., 2006, vol. 110, pp. 8535-39.

    Article  Google Scholar 

  28. H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, Y.Y. Wang: J. Raman Spectrosc., 2013, vol. 44(7), pp. 1018-21.

    Article  Google Scholar 

  29. I. Ahmad, M. Islam, T. Subhani, and Y. Zhu: J. Mater. Eng. Perform. 2015, vol. 24(11), pp. 4236-43.

  30. Y. Zhang, C. Pan: Diam. Relat. Mater. 2012, vol. 24, pp. 1-5.

    Article  Google Scholar 

  31. M. Kostecki, J. Wozniak, T. Cygan, M. Petrus, A. Olszyna: Materials, 2017, vol. 10, pp. 928.

    Article  Google Scholar 

  32. P. Ravindran, K. Manisekar, R. Narayanasamy, P. Narayanasamy: Ceram. Int., 2013, vol. 39, pp. 1169-82.

    Article  Google Scholar 

  33. M. Walczak, D. Pieniak, M. Zwierzchowski: Arch. Civ. Mech. Eng., 2015, vol. 15, pp. 116-23.

    Article  Google Scholar 

  34. M. Djafri, M. Bouchetara, C. Busch, S. Weber: Wear, 2014, vol. 321, pp. 8-15.

    Article  Google Scholar 

  35. A. Daoud, M.T.A. El-khair: Tribol. Int., 2010, vol. 43, pp. 544-53.

    Article  Google Scholar 

  36. J.B. Yang, C.B. Lin, T.C. Wang, H.Y. Chu: Wear, 2004, vol. 257, pp. 941-52.

    Article  Google Scholar 

  37. A. Baradeswaran, A.E. Perumal: Compos. B, 2014, vol. 56, pp. 472-76.

    Article  Google Scholar 

  38. F. Akhlaghi, A.Z. Bidaki: Wear, 2009, vol. 266, pp. 37-45.

    Article  Google Scholar 

  39. M.T. Khorshid, E. Omrani, P.L. Menezes, P.K. Rohatgi: Eng. Sci. Technol., 2016, vol. 19, pp. 463-9.

    Google Scholar 

  40. X.M. Du, R.Q. Chen, F.G. Liu: Dig. J. Nanomater. Biostruct., 2017, vol. 12(1), pp. 37-45.

    Google Scholar 

  41. M. Alipour, R.E. Farsani: Mater. Sci. Eng. A, 2017, vol. 706, pp. 71–82.

    Article  Google Scholar 

  42. L. Jinfeng, J. Longtao, W. Gaohui, T. Shoufu, C. Guoqin: Rare. Metal. Mater. Eng., 2009, vol. 38(11), pp. 1894-98.

    Article  Google Scholar 

  43. P. Kumar, A. Xavior: Mater. Manuf. Process., 2017. https://doi.org/10.1080/10426914.2017.1279320.

    Google Scholar 

  44. A.D. Moghadam, E. Omrani, P.L. Menezes, P.K. Rohatgi: Compos. B., 2015, vol. 77, pp. 402-20.

    Article  Google Scholar 

  45. K. Rajkumar, S. Aravindan: Tribol. Int., 2013, vol. 57, pp. 282-96.

    Article  Google Scholar 

  46. H.J. Choi, S.M. Lee, D.H. Bae: Wear, 2010, vol. 270(1-2), pp. 12-18.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project No. RGP-283.

Conflict of interest

The authors express no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Islam.

Additional information

Manuscript submitted December 1, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M., Khalid, Y., Ahmad, I. et al. Microstructural Evaluation of Inductively Sintered Aluminum Matrix Nanocomposites Reinforced with Silicon Carbide and/or Graphene Nanoplatelets for Tribological Applications. Metall Mater Trans A 49, 2963–2976 (2018). https://doi.org/10.1007/s11661-018-4625-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4625-0

Navigation