Skip to main content
Log in

Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model that combines a cellular automaton (CA) and lattice Boltzmann method (LBM) is presented. The mechanism of A-segregation in an Fe-0.34 wt pct C alloy ingot is analyzed on the basis of microstructural morphology calculations. The CA is used to capture the solid/liquid interface, while the LBM is used to calculate the transport phenomena. (1) The solidification of global columnar dendrites was simulated, and two obvious A-segregation bands appeared in the middle-radius region between the ingot wall surface and the centerline. In addition, the angle of deflection to the centerline increased with the increasing heat dissipation rate of the wall surface. When natural convection was ignored, the A-segregation disappeared, and only positive segregation was present in the center and bottom corner of the ingot. (2) Mixed columnar–equiaxed solidification was simulated. Many A-segregation bands appeared in the ingot. (3) Global equiaxed solidification was simulated, and no A-segregation bands were found. The results show that the upward movement of the high-concentration melt is the key to the formation of A-segregation bands, and remelting and the emergence of equiaxed grains are not necessary conditions to develop these bands. However, the appearance of equiaxed grains accelerates the formation of vortexes; thus, many A-segregation bands appear during columnar–equiaxed solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Beckermann: Mater. Sci. Technol., 2001, pp. 4733–38.

  2. Marburg E: Metals, 1953, pp.157-172.

    Google Scholar 

  3. Suzuki K, Miyamoto T: Trans. Iron. Steel. Inst. 1978, vol.18, pp.80-89.

    Google Scholar 

  4. Schneider M C, Beckermann C: Metall. Mater. Trans. A. 1995, vol. 26, pp. 2373-2388.

    Article  Google Scholar 

  5. Beckermann C: Int. Mater. Rev. 2002, vol. 47, pp. 243-261.

    Article  Google Scholar 

  6. Wu M H, Könözsy L, Ludwig A, Schützenhöfer W, Ranzer R: Ste. Res. Int. 2008, vol.79, pp. 637-644.

    Article  Google Scholar 

  7. Wu M H, Ludwig A: Metall. Mater. Trans. A. 2006, vol.37, pp. 1613-1631.

    Article  Google Scholar 

  8. Flemings M C: Metall. Trans. 1974, vol.5, pp. 2121-2134.

    Article  Google Scholar 

  9. Flemings M C: Metal. 1976, vol.5, pp. 1-15.

    Google Scholar 

  10. Zaloznik M, Combeau H: Int. J. Therm. Sci. 2010, vol.49, pp. 1500-1509.

    Article  Google Scholar 

  11. Li J, Wu M H, Ludwig A, Kharicha A: Int. J. Heat. Mass. Transfer. 2014, vol.72, pp. 668-679.

    Article  Google Scholar 

  12. Bennon W D, Incropera F P: Metall. Trans. B. 1987, vol.18, pp. 611-616.

    Article  Google Scholar 

  13. Mehrabian R, Keane M, Flemings M C: Metall. Mater. Trans. 1970, vol.1, pp. 1209-1220.

    Article  Google Scholar 

  14. Combeau H, Založnik M, Hans S, Richy P E: Metall. Mater. Trans. B.2009, vol.40, pp. 289-304.

    Article  Google Scholar 

  15. Kumar A, Založnik M, Combeau H, Goyeau B, Gobin D: Modelling Simul.Mater.Sci.Eng. 2013, vol.21, pp.045016.

    Article  Google Scholar 

  16. Wu M H, Ludwig A, Kharicha A: Applied Math. Model. 2017, vol.41, pp.102-120

    Article  Google Scholar 

  17. Medina M, Terrail Y DU, Durand F, Fautrelle Y: Metall. Mater. Trans. B. 2004, vol.35, pp.743-754.

    Article  Google Scholar 

  18. Ge H H, Li J, Han X J, Xia M X, Li J G: Mater. Process. Technol. 2016, vol.227, pp.308-317.

    Article  Google Scholar 

  19. Ge H H, Ren F L, Li J, Hu Q D, Xia M X, Li J G: Mater. Process. Technol.2018, vol.252, pp.362-369.

    Article  Google Scholar 

  20. Chopard B, Masselot A: Future. Genera. Compu. Sys. 1999, vol.16, pp.249-257.

    Article  Google Scholar 

  21. Yin H, Felicelli S D, Wang L: Acta Mater. 2011, vol.59, pp.3124-3136.

    Article  Google Scholar 

  22. Sun D K, Zhu M F, Pan S Y, Yang C R, Raabe D: Comput. Math. Appl.2011, vol.61, pp.3585-3592.

    Article  Google Scholar 

  23. Jelinek B, Eshraghi M, Felicelli S, Peters J F: Comput. Phys. Commun. 2014, vol.185, pp.939-947.

    Article  Google Scholar 

  24. Pan S Y, Yang C R, Sun D K, Dai T, Zhu M F: Acta. Metall. Sin. 2009, vol.45, pp.43-45.

    Google Scholar 

  25. Guo Z L, Li Q, Zheng C G: Comput. Phys. 2002, vol.19, pp.483-487.

    Google Scholar 

  26. Rappaz M, Gandin C A: Acta. Metall. Mater. 1993, vol.41, pp.345-360.

    Article  Google Scholar 

  27. Rappaz M,Thevoz P: Acta. Metall. 1987, vol.35, pp.1487-1497.

    Article  Google Scholar 

  28. Sun D K, Zhu M F, Yang C R, Pan S Y: Acta. Phys. Sin. 2009, vol.58, pp.285-291.

    Google Scholar 

  29. Li Q, Beckermann C: Cryst. Growth. 2002, vol.236, pp.482-498.

    Article  Google Scholar 

  30. Prescott P J, Incropera F P: Metall. Mater. Trans. B. 1991, vol.22, pp.529-540.

    Article  Google Scholar 

  31. Lesoult G: Mater. Sci. Eng. A. 2005, vol.413, pp.19-29.

    Article  Google Scholar 

  32. Sun D K, Zhu M F, Dai T, Cao W S, Chen S L, Raabe D, Hong C P: Int. J. Cast. Metals. Res. 2011, vol.24, pp.177-183.

    Article  Google Scholar 

  33. Hu X L, Guo Z L, Zheng C G: Hydrodynam. 2003, vol.2, pp.127–128.

    Google Scholar 

  34. Li J, Wu M H, Hao J, Kharicha A, Ludwig A: Comput. Mater. Sci. 2012, vol.55, pp.419-429.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the National Science Foundation of China No. 51475138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ri Li.

Additional information

Manuscript submitted November 2, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Bao, Y., Liu, L. et al. Study of the Formation Mechanism of A-Segregation Based on Microstructural Morphology. Metall Mater Trans A 49, 2750–2765 (2018). https://doi.org/10.1007/s11661-018-4609-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4609-0

Navigation