Skip to main content
Log in

Assessment of EBSD Analysis and Reconstruction Methods as a Tool for the Determination of Recrystallized Fractions in Hot-Deformed Austenitic Microstructures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural evolution of hot-deformed austenite during recrystallization was studied in a non-microalloyed low carbon steel and a low carbon steel, microalloyed with niobium and titanium. Double-hit compression tests were carried out to evaluate the isothermal recrystallization behavior. Specific deformation temperatures and interpass times were combined to produce characteristic recrystallization states by quenching the samples to a martensitic microstructure. The reconstruction software Merengue 2 was used to determine the prior austenite microstructure and evaluate the recrystallized fraction in the microstructure. The reconstruction is based on EBSD measurements of the martensitic microstructure. The determination of the recrystallized fraction was realized by evaluating the grain orientation spread. This work compares the results of both methods and estimates their uncertainties. It shows the potential of EBSD reconstruction methods to characterize different recrystallization states of low carbon steels out of EBSD data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L Bäcke (2010) ISIJ Int. 50(2):239–247.

    Article  Google Scholar 

  2. B Dutta, CM Sellars (1987) Am. J. Mater. Sci. Technol. 3(3):197-206.

    Article  Google Scholar 

  3. FJ Humphreys (1997) Acta Mater. 45(12):5031-5039.

    Article  Google Scholar 

  4. H Watanabe, YE Smith, RD Pehlke (1997) The Hot Deformation of Austenite. Metallurgical Society, AIME, New York, pp. 140-168.

    Google Scholar 

  5. S Vervynckt, K Verbeken, B Lopez, JJ Jonas (2012) Int. Mater. Rev. 57(4):187-207.

    Article  Google Scholar 

  6. S Bechet, L Beaujard (1955) Rev. Metall. (Paris) 52(10):830–836

    Article  Google Scholar 

  7. S Weyand, D Britz, D Rupp, F Mücklich (2015) Mater. Perform. Charact. 4(3):322-340.

    Google Scholar 

  8. G. Nolze: Cryst. Res. Technol., 2006, 41(1):72-77.

    Article  Google Scholar 

  9. C Cayron (2007) J. Appl. Crystallogr. 40(6):1183-1188.

    Article  Google Scholar 

  10. L. Germain, P. Blaineau, N. Gey, M. Humbert: Mater. Sci. Forum, 2011, vol. 702, pp. 846-849.

    Article  Google Scholar 

  11. M. Humbert, L. Germain, N. Gey, E. Boucard: Acta Mater., 2015, vol. 82, pp. 137-144.

    Article  Google Scholar 

  12. M. Kubota, K. Ushioda, G. Miyamoto, T. Furuhara: Scr. Mater., 2016, vol. 112, :92-95.

    Article  Google Scholar 

  13. G Miyamoto, N Takayama, T Furuhara (2009) Scr. Mater. 60(12):1113-1116.

    Article  Google Scholar 

  14. JS Perttula, LP Karjalainen (1998) Mater. Sci. Technol. 14(7):626-630.

    Article  Google Scholar 

  15. AI Fernández, B López, JM Rodríguez-Ibabe (1999) Scr. Mater. 40(5):543-549.

    Article  Google Scholar 

  16. CN Homsher, CJ Van Tyne (2015) Mater. Perform. Charact. 4(3):293-306.

    Google Scholar 

  17. M. Humbert, P. Blaineau, L. Germain, N. Gey: Scr. Mater., 2011, vol. 64, :114-117.

    Article  Google Scholar 

  18. DP Field, LT Bradford, MM Nowell, TM Lillo (2007) Acta Mater. 55(12):4233-4241.

    Article  Google Scholar 

  19. H. Mirzadeh, A. Najafizadeh, J. M. Cabrera, P. Rodriguez-Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-245.

    Article  Google Scholar 

  20. H. Sato, S. Zaefferer: Acta Mater., 2009, vol. 57, pp. 1931–1937

    Article  Google Scholar 

  21. L. Eisenhut, D. Rupp, and C. Motz: Assoc. Ital. Metall., Conference Proceeding, 5th International Conference on Thermomechanical Processing, Milan, 2016

  22. AIZ Farahat (2008) J. Mater. Process. Technol. 204(1):365-369.

    Article  Google Scholar 

  23. Y Huang, FJ Humphreys (2012) Mater. Chem. Phys. 132(1):166-174.

    Article  Google Scholar 

  24. P. Uranga, A. I. Fernández, B. López, J. M. Rodríguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 345, :319-327.

    Article  Google Scholar 

  25. SF Medina (1997) J. Mater. Sci. 32(6):1487-1492.

    Article  Google Scholar 

  26. S Vervynckt, K Verbeken, P Thibaux, M Liebeherr (2009) ISIJ Int. 49(6):911-920.

    Article  Google Scholar 

  27. S. Vervynckt, K. Verbeken, P. Thibaux, Y. Houbaert: Mater. Sci. Eng. A, 2011, vol. 528, :5519-5528.

    Article  Google Scholar 

  28. D. P. Field: Ultramicroscopy, 1997, vol. 67, :1-9.

    Article  Google Scholar 

  29. L. Germain: Habilitation dissertation, 2014, http://lionelgermain.free.fr/HDR%20Lionel%20Germain.pdf.

  30. P. Blaineau, L. Germain, M. Humbert, N. Gey: Solid State Phenom., 2010, vol. 160, pp. 203-210.

    Article  Google Scholar 

  31. N. Bernier, L. Bracke, L. Malet, S. Godet: Mater. Charact., 2014, vol. 89, pp. 23-32.

    Article  Google Scholar 

  32. K. Radwanski: Steel Res. Int., 2015, vol.86, pp. 1379–1390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Eisenhut.

Additional information

Manuscript submitted September 28, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, T., Eisenhut, L., Germain, L. et al. Assessment of EBSD Analysis and Reconstruction Methods as a Tool for the Determination of Recrystallized Fractions in Hot-Deformed Austenitic Microstructures. Metall Mater Trans A 49, 2795–2802 (2018). https://doi.org/10.1007/s11661-018-4593-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4593-4

Navigation