Skip to main content
Log in

Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer: International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International, Houston 2016.

    Google Scholar 

  2. A.W. Peabody and R.L. Bianchetti: Control of Pipeline Corrosion, 2nd edn. NACE International, Houston (2000)

    Google Scholar 

  3. E. Klechka, S.F. Daily, and K.C. Garrity: Concrete, 2007, pp. 1–11.

  4. V. Ashworth: Shreir’s Corros., 2010, vol. 2, pp. 2747–62.

    Article  Google Scholar 

  5. H.B. Xue and Y.F. Cheng: J. Mater. Eng. Perform., 2010, vol. 19, pp. 1311–7.

    Article  CAS  Google Scholar 

  6. D.L. Miller, K.D. Efird, and N. Davis: NACE Corrosion Conference & Expo, 2008, pp. 1–21.

  7. M. Tjelta and J. Kvarekval: NACE Corrosion Conference & Expo, vol. 7478, 2016, pp. 1–14.

  8. F.F. Eliyan and A. Alfantazi: J. Appl. Electrochem., 2012, vol. 42, pp. 233–48.

    Article  CAS  Google Scholar 

  9. A. Shahryari, J.A. Szpunar, and S. Omanovic: Corros. Sci., 2009, vol. 51, pp. 677–82.

    Article  CAS  Google Scholar 

  10. M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 3064–67.

    Article  CAS  Google Scholar 

  11. M.A. Arafin and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 119–28.

    Article  CAS  Google Scholar 

  12. A.H. King and S. Shekhar: J. Mater. Sci., 2006, vol. 41, pp. 7675–82.

    Article  CAS  Google Scholar 

  13. NACETM0169/G31-12a: Standard Guide for Laboratory Immersion Corrosion Testing of Metals, vol. 1, 2012.

  14. NACE International Task Group: Field Monitoring of Corrosion Rates in Oil and Gas Production Environments Using Electrochemical Techniques, 2014.

  15. M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi: Eng. Fail. Anal., 2013, vol. 33, pp. 163–75.

    Article  CAS  Google Scholar 

  16. F. Thebault, S. Frappart, L. Delattre, H. Marchebois, and L.A. Rochelle: NACE Corrosion Conference & Expo, 2011, pp. 1–14.

  17. H.A. Masayuki Sagara, Y. Tomio, Y. Otome, N. Sawawatari, and T. Omura: NACE Corrosion Conference & Expo, 2016, pp. 1–15.

  18. M. Masoumi, C.C. Silva, and H.F.G. de Abreu: Corros. Sci., 2016, vol. 111, pp. 121–31.

    Article  CAS  Google Scholar 

  19. B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and J.Y. Yoo: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1793–805.

    Article  CAS  Google Scholar 

  20. S.S. Nayak, R.D.K. Misra, J. Hartmann, F. Siciliano, and J.M. Gray: Mater. Sci. Eng. A, 2008, vol. 494, pp. 456–63.

    Article  Google Scholar 

  21. 21 M. Jiang, L.-N. Chen, J. He, G.-Y. Chen, C.-H. Li, and X.-G. Lu: Adv. Manuf., 2014, vol. 2, pp. 265–74.

    Article  CAS  Google Scholar 

  22. 22 X.L. Wan, K.M. Wu, and Z.H. Xia: Adv. Mater. Res., 2013, vol. 690, pp. 182–85.

    Article  Google Scholar 

  23. 23 D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, F.J. Barbaro, and E. V. Pereloma: Mater. Sci. Forum, 2010, vol. 654–656, pp. 162–65.

    Article  Google Scholar 

  24. 24 X.H. Gao, J. Li, C. Li, Y. Liang, L.X. Du, and Z.G. Liu: Adv. Mater. Res., 2014, vol. 900, pp. 730–33.

    Article  Google Scholar 

  25. 25 J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar: Mater. Sci. Eng. A, 2017, vol. 703, pp. 477–85.

    Article  CAS  Google Scholar 

  26. 26 M. Zhu, C. Du, X. Li, Z. Liu, S. Wang, T. Zhao, and J. Jia: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1358–65.

    Article  CAS  Google Scholar 

  27. 27 L. LAN, C. QIU, D. ZHAO, and X. GAO: J. Iron Steel Res. Int., 2011, vol. 18, pp. 57–63.

    Article  CAS  Google Scholar 

  28. 28 C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang: J. Alloys Compd., 2009, vol. 484, pp. 966–72.

    Article  CAS  Google Scholar 

  29. 29 F. Castro Cerda, L. Kestens, A. Monsalve, and R. Petrov: Metals (Basel)., 2016, vol. 6, p. 288.

    Article  Google Scholar 

  30. 30 D. Dwivedi, K.R. Lepko, and T. Becker: RSC Adv, 2017, vol. 7, pp. 4580–610.

    Article  CAS  Google Scholar 

  31. 31 S.A. Park, J.G. Kim, Y.S. He, K.S. Shin, and J.B. Yoon: Phys. Met. Metallogr., 2014, vol. 115, pp. 1285–94.

    Article  Google Scholar 

  32. 32 N.M. Shkatulyak and O.M. Tkachuk: Mater. Sci., 2012, vol. 48, pp. 153–61.

    Article  CAS  Google Scholar 

  33. 33 M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar: Mater. Sci. Eng. A, 2015, vol. 620, pp. 97–106.

    Article  Google Scholar 

  34. 34 S. Qu, X. Pang, Y. Wang, and K. Gao: Corros. Sci., 2013, vol. 75, pp. 67–77.

    Article  CAS  Google Scholar 

  35. 35 A.H. Bott, D.S. Dos Santos, and P.E. V De Miranda: J. Mater. Sci. Lett., 1993, vol. 12, pp. 390–93.

    Article  CAS  Google Scholar 

  36. 36 G.W. Hong and J.Y. Lee: J. Mater. Sci., 1983, vol. 18, pp. 271–7.

    Article  CAS  Google Scholar 

  37. 37 A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180–93.

    Article  CAS  Google Scholar 

  38. 38 J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, and J. Zhang: J. Alloys Compd., 2017, vol. 716, pp. 220–30.

    Article  CAS  Google Scholar 

  39. 39 V. Randle and R. Jones: Mater. Sci. Eng. A, 2009, vol. 524, pp. 134–42.

    Article  Google Scholar 

  40. 40 V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle: Scr. Mater., 2005, vol. 52, pp. 147–52.

    Article  CAS  Google Scholar 

  41. V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, and R. Penelle: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 1022–31.

    Article  Google Scholar 

  42. E.E. Oguzie, Y. Li, and F.H. Wang: Electrochim. Acta, 2007, vol. 53, pp. 909–14.

    Article  CAS  Google Scholar 

  43. S. Choudhary, A. Garg, and K. Mondal: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2969–76.

    Article  CAS  Google Scholar 

  44. U. Eduok, E. Jossou, A. Tiamiyu, J. Omale, and J. Szpunar: Ind. Eng. Chem. Res., 2017, vol. 56, pp. 5586–97.

    Article  CAS  Google Scholar 

  45. U. Eduok, O. Faye, and J. Szpunar: RSC Adv., 2016, vol. 6, pp. 108777–90.

    Article  CAS  Google Scholar 

  46. 46 G.R. Argade, S.K. Panigrahi, and R.S. Mishra: Corros. Sci., 2012, vol. 58, pp. 145–51.

    Article  CAS  Google Scholar 

  47. X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang: Eng. Fail. Anal., 2011, vol. 18, pp. 1981–89.

    Article  CAS  Google Scholar 

  48. S.N. Smith: NACE Corrosion, 2011, pp. 1–13.

  49. S.N. Smith and M.W. Joosten: NACE Corrosion, 2006, pp. 1–26.

  50. P.C. Pistorius: Final Technical Report Accelerated Corrosion of Stainless Steel in Thiocyanate—Containing Solutions, 2012.

  51. M.E. Mitzithra and S. Paul: NACE Corrosion Conference & Expo, 2016, pp. 1–14.

  52. Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang: Corros. Sci., 2011, vol. 53, pp. 2761–66.

    Article  CAS  Google Scholar 

  53. S.P. Lynch: Scr. Mater., 2011, vol. 65, pp. 851–54.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Natural Sciences and Engineering Research Council of Canada (NSERC strategic Grant 470033) for their financial support. The test specimens for this study were supplied by Evraz North America, located in Regina, Saskatchewan Canada. Our gratitude also goes to CANMET, Natural Resources, Hamilton, Ontario, Canada for processing pipeline steel specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enyinnaya Ohaeri.

Additional information

Manuscript submitted December 18, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohaeri, E., Omale, J., Eduok, U. et al. Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel. Metall Mater Trans A 49, 2269–2280 (2018). https://doi.org/10.1007/s11661-018-4592-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4592-5

Navigation