Advertisement

Metallurgical and Materials Transactions A

, Volume 49, Issue 6, pp 2269–2280 | Cite as

Effect of Thermomechanical Processing and Crystallographic Orientation on the Corrosion Behavior of API 5L X70 Pipeline Steel

  • Enyinnaya Ohaeri
  • Joseph Omale
  • Ubong Eduok
  • Jerzy Szpunar
Article

Abstract

This work presents the electrochemical response of X70 pipeline steel substrates thermomechanically processed at different conditions. The WE sample was hot rolled at a temperature range of 850 °C to 805 °C and cooled at a rate of 42.75 °C/s. Another sample WD was hot rolled from 880 °C to 815 °C and cooled at a faster rate of 51.5 °C/s. Corrosion tests were conducted electrochemically by potentiodynamic polarization in hydrogen-charged and non-hydrogen-charged environments. A lower corrosion rate was measured with hydrogen charging due to the rapid formation of corrosion product film on pipeline substrate, but WE specimen emerged as the most susceptible to corrosion with and without hydrogen charging. Variations in thermomechanical rolling conditions influenced grain orientation, protective film properties, corrosion, and cracking behavior on both specimens. Cracks were seen in both specimens after hydrogen charging, but specimen WE experienced a more intense deterioration of protective corrosion product film and subsequent cracking. A large part of specimen WD retained its protective corrosion product film after the polarization test, and sites where spalling occurred resulted in pitting with less cracking. Despite weak crystallographic texture noticed in both specimens, WD showed a higher intensity of corrosion-resistant 111||ND-oriented grains, while WE showed a more random distribution of 111||ND-, 011||ND-, and 001||ND-oriented grains with a lower intensity.

Notes

Acknowledgments

The authors are grateful to Natural Sciences and Engineering Research Council of Canada (NSERC strategic Grant 470033) for their financial support. The test specimens for this study were supplied by Evraz North America, located in Regina, Saskatchewan Canada. Our gratitude also goes to CANMET, Natural Resources, Hamilton, Ontario, Canada for processing pipeline steel specimens.

References

  1. 1.
    G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, and J. Payer: International Measures of Prevention, Application, and Economics of Corrosion Technologies Study. NACE International, Houston 2016.Google Scholar
  2. 2.
    A.W. Peabody and R.L. Bianchetti: Control of Pipeline Corrosion, 2nd edn. NACE International, Houston (2000)Google Scholar
  3. 3.
    E. Klechka, S.F. Daily, and K.C. Garrity: Concrete, 2007, pp. 1–11.Google Scholar
  4. 4.
    V. Ashworth: Shreir’s Corros., 2010, vol. 2, pp. 2747–62.CrossRefGoogle Scholar
  5. 5.
    H.B. Xue and Y.F. Cheng: J. Mater. Eng. Perform., 2010, vol. 19, pp. 1311–7.CrossRefGoogle Scholar
  6. 6.
    D.L. Miller, K.D. Efird, and N. Davis: NACE Corrosion Conference & Expo, 2008, pp. 1–21.Google Scholar
  7. 7.
    M. Tjelta and J. Kvarekval: NACE Corrosion Conference & Expo, vol. 7478, 2016, pp. 1–14.Google Scholar
  8. 8.
    F.F. Eliyan and A. Alfantazi: J. Appl. Electrochem., 2012, vol. 42, pp. 233–48.CrossRefGoogle Scholar
  9. 9.
    A. Shahryari, J.A. Szpunar, and S. Omanovic: Corros. Sci., 2009, vol. 51, pp. 677–82.CrossRefGoogle Scholar
  10. 10.
    M. Hoseini, A. Shahryari, S. Omanovic, and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 3064–67.CrossRefGoogle Scholar
  11. 11.
    M.A. Arafin and J.A. Szpunar: Corros. Sci., 2009, vol. 51, pp. 119–28.CrossRefGoogle Scholar
  12. 12.
    A.H. King and S. Shekhar: J. Mater. Sci., 2006, vol. 41, pp. 7675–82.CrossRefGoogle Scholar
  13. 13.
    NACETM0169/G31-12a: Standard Guide for Laboratory Immersion Corrosion Testing of Metals, vol. 1, 2012.Google Scholar
  14. 14.
    NACE International Task Group: Field Monitoring of Corrosion Rates in Oil and Gas Production Environments Using Electrochemical Techniques, 2014.Google Scholar
  15. 15.
    M.A. Mohtadi-Bonab, J.A. Szpunar, and S.S. Razavi-Tousi: Eng. Fail. Anal., 2013, vol. 33, pp. 163–75.CrossRefGoogle Scholar
  16. 16.
    F. Thebault, S. Frappart, L. Delattre, H. Marchebois, and L.A. Rochelle: NACE Corrosion Conference & Expo, 2011, pp. 1–14.Google Scholar
  17. 17.
    H.A. Masayuki Sagara, Y. Tomio, Y. Otome, N. Sawawatari, and T. Omura: NACE Corrosion Conference & Expo, 2016, pp. 1–15.Google Scholar
  18. 18.
    M. Masoumi, C.C. Silva, and H.F.G. de Abreu: Corros. Sci., 2016, vol. 111, pp. 121–31.CrossRefGoogle Scholar
  19. 19.
    B. Hwang, Y.M. Kim, S. Lee, N.J. Kim, and J.Y. Yoo: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1793–805.CrossRefGoogle Scholar
  20. 20.
    S.S. Nayak, R.D.K. Misra, J. Hartmann, F. Siciliano, and J.M. Gray: Mater. Sci. Eng. A, 2008, vol. 494, pp. 456–63.CrossRefGoogle Scholar
  21. 21.
    21 M. Jiang, L.-N. Chen, J. He, G.-Y. Chen, C.-H. Li, and X.-G. Lu: Adv. Manuf., 2014, vol. 2, pp. 265–74.CrossRefGoogle Scholar
  22. 22.
    22 X.L. Wan, K.M. Wu, and Z.H. Xia: Adv. Mater. Res., 2013, vol. 690, pp. 182–85.CrossRefGoogle Scholar
  23. 23.
    23 D. Hejazi, A.J. Haq, N. Yazdipour, D.P. Dunne, F.J. Barbaro, and E. V. Pereloma: Mater. Sci. Forum, 2010, vol. 654–656, pp. 162–65.CrossRefGoogle Scholar
  24. 24.
    24 X.H. Gao, J. Li, C. Li, Y. Liang, L.X. Du, and Z.G. Liu: Adv. Mater. Res., 2014, vol. 900, pp. 730–33.CrossRefGoogle Scholar
  25. 25.
    25 J.I. Omale, E.G. Ohaeri, A.A. Tiamiyu, M. Eskandari, K.M. Mostafijur, and J.A. Szpunar: Mater. Sci. Eng. A, 2017, vol. 703, pp. 477–85.CrossRefGoogle Scholar
  26. 26.
    26 M. Zhu, C. Du, X. Li, Z. Liu, S. Wang, T. Zhao, and J. Jia: J. Mater. Eng. Perform., 2014, vol. 23, pp. 1358–65.CrossRefGoogle Scholar
  27. 27.
    27 L. LAN, C. QIU, D. ZHAO, and X. GAO: J. Iron Steel Res. Int., 2011, vol. 18, pp. 57–63.CrossRefGoogle Scholar
  28. 28.
    28 C.F. Dong, X.G. Li, Z.Y. Liu, and Y.R. Zhang: J. Alloys Compd., 2009, vol. 484, pp. 966–72.CrossRefGoogle Scholar
  29. 29.
    29 F. Castro Cerda, L. Kestens, A. Monsalve, and R. Petrov: Metals (Basel)., 2016, vol. 6, p. 288.CrossRefGoogle Scholar
  30. 30.
    30 D. Dwivedi, K.R. Lepko, and T. Becker: RSC Adv, 2017, vol. 7, pp. 4580–610.CrossRefGoogle Scholar
  31. 31.
    31 S.A. Park, J.G. Kim, Y.S. He, K.S. Shin, and J.B. Yoon: Phys. Met. Metallogr., 2014, vol. 115, pp. 1285–94.CrossRefGoogle Scholar
  32. 32.
    32 N.M. Shkatulyak and O.M. Tkachuk: Mater. Sci., 2012, vol. 48, pp. 153–61.CrossRefGoogle Scholar
  33. 33.
    33 M.A. Mohtadi-Bonab, M. Eskandari, and J.A. Szpunar: Mater. Sci. Eng. A, 2015, vol. 620, pp. 97–106.CrossRefGoogle Scholar
  34. 34.
    34 S. Qu, X. Pang, Y. Wang, and K. Gao: Corros. Sci., 2013, vol. 75, pp. 67–77.CrossRefGoogle Scholar
  35. 35.
    35 A.H. Bott, D.S. Dos Santos, and P.E. V De Miranda: J. Mater. Sci. Lett., 1993, vol. 12, pp. 390–93.CrossRefGoogle Scholar
  36. 36.
    36 G.W. Hong and J.Y. Lee: J. Mater. Sci., 1983, vol. 18, pp. 271–7.CrossRefGoogle Scholar
  37. 37.
    37 A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Acta Mater., 2016, vol. 113, pp. 180–93.CrossRefGoogle Scholar
  38. 38.
    38 J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, and J. Zhang: J. Alloys Compd., 2017, vol. 716, pp. 220–30.CrossRefGoogle Scholar
  39. 39.
    39 V. Randle and R. Jones: Mater. Sci. Eng. A, 2009, vol. 524, pp. 134–42.CrossRefGoogle Scholar
  40. 40.
    40 V. Venegas, F. Caleyo, J.L. González, T. Baudin, J.M. Hallen, and R. Penelle: Scr. Mater., 2005, vol. 52, pp. 147–52.CrossRefGoogle Scholar
  41. 41.
    V. Venegas, F. Caleyo, J.M. Hallen, T. Baudin, and R. Penelle: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2007, vol. 38, pp. 1022–31.CrossRefGoogle Scholar
  42. 42.
    E.E. Oguzie, Y. Li, and F.H. Wang: Electrochim. Acta, 2007, vol. 53, pp. 909–14.CrossRefGoogle Scholar
  43. 43.
    S. Choudhary, A. Garg, and K. Mondal: J. Mater. Eng. Perform., 2016, vol. 25, pp. 2969–76.CrossRefGoogle Scholar
  44. 44.
    U. Eduok, E. Jossou, A. Tiamiyu, J. Omale, and J. Szpunar: Ind. Eng. Chem. Res., 2017, vol. 56, pp. 5586–97.CrossRefGoogle Scholar
  45. 45.
    U. Eduok, O. Faye, and J. Szpunar: RSC Adv., 2016, vol. 6, pp. 108777–90.CrossRefGoogle Scholar
  46. 46.
    46 G.R. Argade, S.K. Panigrahi, and R.S. Mishra: Corros. Sci., 2012, vol. 58, pp. 145–51.CrossRefGoogle Scholar
  47. 47.
    X. Zhang, K. Xiao, C. Dong, J. Wu, X. Li, and Y. Huang: Eng. Fail. Anal., 2011, vol. 18, pp. 1981–89.CrossRefGoogle Scholar
  48. 48.
    S.N. Smith: NACE Corrosion, 2011, pp. 1–13.Google Scholar
  49. 49.
    S.N. Smith and M.W. Joosten: NACE Corrosion, 2006, pp. 1–26.Google Scholar
  50. 50.
    P.C. Pistorius: Final Technical Report Accelerated Corrosion of Stainless Steel in Thiocyanate—Containing Solutions, 2012.Google Scholar
  51. 51.
    M.E. Mitzithra and S. Paul: NACE Corrosion Conference & Expo, 2016, pp. 1–14.Google Scholar
  52. 52.
    Y. Wang, W. Zhao, H. Ai, X. Zhou, and T. Zhang: Corros. Sci., 2011, vol. 53, pp. 2761–66.CrossRefGoogle Scholar
  53. 53.
    S.P. Lynch: Scr. Mater., 2011, vol. 65, pp. 851–54.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2018

Authors and Affiliations

  • Enyinnaya Ohaeri
    • 1
  • Joseph Omale
    • 1
  • Ubong Eduok
    • 1
  • Jerzy Szpunar
    • 1
  1. 1.Department of Mechanical Engineering, College of EngineeringUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations