Skip to main content
Log in

Tensile Properties and Deformation Mechanisms of Haynes 282 at Various Temperatures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of temperature on the deformation mechanism and corresponding tensile properties of Haynes 282 is investigated in the temperature range from room temperature to 800 °C. It is found that below 600 °C, the yield strength remains basically unchanged with increasing temperature, while, above the temperature, a dramatic decrease in the yield strength is observed. Transmission electron microscopy observations on the slightly deformed specimens reveal that, for the experimental alloy, the plastic deformation is accomplished predominantly by pairs of a/2〈101〉 dislocation shearing through γ′ precipitates at temperatures between room temperature and 600 °C and by individual matrix dislocation bypassing γ′ precipitates above 760 °C, whereas at temperatures between the two temperatures, anti-phase boundary shearing and stacking fault shearing as well as Orowan looping operate simultaneously during the initial plastic deformation. Based on the experimental observations, it is deemed that the transitions in the deformation mechanisms account for the variation of the yield strength of the experimental alloy with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.D. Gianfrancesco, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead, Kidlington, 2016.

    Google Scholar 

  2. L.M. Pike: Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air, Barcelona, Spain, 2006, pp. 1–9.

  3. L.M. Pike: Proceedings of the Eleventh International Symposium on Superalloys, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard, eds., TMS, 2008, pp. 191–200.

  4. C.J. Boehlert, S.C. Longanbach: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4888-4898.

    Article  Google Scholar 

  5. X. Song, L. Tang, Z. Chen, R. Zhou: J. Mater. Sci., 2016, pp. 1–12.

  6. C. Joseph, C. Persson, M.H. Colliander: Mater. Sci. Eng., A, 2017, vol. 679, pp. 520-530.

    Article  Google Scholar 

  7. A.J. Ardell: Metall. Mater. Trans. A, 1985, vol. 16, pp. 2131-2165.

    Article  Google Scholar 

  8. R.C. Reed and C.M.F. Rae: Physical Metallurgy, D.E. Laughlin, K. Hono, eds., Elsevier, Amsterdam, 2014, pp. 2215–90.

  9. D. Raynor, J.M. Silcock: Metal. Sci., 1970, vol. 4, pp. 121-130.

    Article  Google Scholar 

  10. D.A. Grose, G.S. Ansell: Metall. Mater. Trans. A, 1981, vol. 12, pp. 1631-1645.

    Article  Google Scholar 

  11. B. Reppich: Acta Metall., 1982, vol. 30, pp. 87-94.

    Article  Google Scholar 

  12. B. Reppich, P. Schepp, G. Wehner: Acta Metall., 1982, vol. 30, pp. 95-104.

    Article  Google Scholar 

  13. E. Nembach, J. Pesicka, E. Langmaack: Mater. Sci. Eng., A, 2003, vol. 362, pp. 264-273.

    Article  Google Scholar 

  14. W.Z. Wang, H.U. Hong, I.S. Kim, B.G. Choi, H.W. Jeong, M.Y. Kim, C.Y. Jo: Mater. Sci. Eng., A, 2009, vol. 523, pp. 242-245.

    Article  Google Scholar 

  15. I.S. Kim, B.G. Choi, H.U. Hong, Y.S. Yoo, C.Y. Jo: Mater. Sci. Eng., A, 2011, vol. 528, pp. 7149-7155.

    Article  Google Scholar 

  16. Z. Zhong, Y. Gu, Y. Yuan, Z. Shi: Metall. Mater. Trans. A, 2014, vol. 45, pp. 343-350.

    Article  Google Scholar 

  17. F. Sun, Y.F. Gu, J.B. Yan, Z.H. Zhong, M. Yuyama: J. Alloys. Compd., 2016, vol. 657, pp. 565-569.

    Article  Google Scholar 

  18. B. Sundman, B. Jansson, J.O. Andersson: CALPHAD, 1985, vol. 9, pp. 153-190.

    Article  Google Scholar 

  19. P. Zhang, Y. Yuan, B. Li, G. Yang, X. Song: Philos. Mag. Lett., 2016, vol. 96, pp. 238-245.

    Article  Google Scholar 

  20. P. Zhang, Y. Yuan, S.C. Shen, B. Li, R.H. Zhu, G.X. Yang, X.L. Song: J. Alloys. Compd., 2017, vol. 694, pp. 502-509.

    Article  Google Scholar 

  21. M. Heilmaier, U. Leetz, B. Reppich: Mater. Sci. Eng., A, 2001, vol. 319, pp. 375-378.

    Article  Google Scholar 

  22. P. Zhang, Y. Yuan, B. Li, S.W. Guo, G.X. Yang, X.L. Song: Mater. Sci. Eng., A, 2016, vol. 655, pp. 152-159.

    Article  Google Scholar 

  23. D.M. Knowles, Q.Z. Chen: Mater. Sci. Eng., A, 2003, vol. 340, pp. 88-102.

    Article  Google Scholar 

  24. J.P. Hirth, J. Lothe: Theory of Dislocations, 2rd ed., John Wiley and Sons, Malabar, 1982.

    Google Scholar 

  25. A.J. Ardell: Intermetallic Compounds, J.H. Westbrook, R.L. Fleischer, eds., Wiley, Chichester, 1995, pp. 257–86.

  26. T. Kruml, E. Conforto, B.L. Piccolo, D. Caillard, J.L. Martin: Acta Mater., 2002, vol. 50, pp. 5091–5101.

    Article  Google Scholar 

  27. N. Sun, L. Zhang, Z. Li, A. Shan: Mater. Sci. Eng., A, 2014, vol. 606, pp. 417-425.

    Article  Google Scholar 

  28. P. Veyssiere, J. Douin, P. Beauchamp: Philos. Mag. A, 1985, vol. 51, pp. 469-483.

    Article  Google Scholar 

  29. P. Caron, T. Khan, P. Veyssiere: Philos. Mag. A, 1988, vol. 57, pp. 859-875.

    Article  Google Scholar 

  30. B. Clausen, T. Lorentzen, T. Leffers: Acta Mater., 1998, vol. 46, pp. 3087-3098.

    Article  Google Scholar 

  31. S.M. Copley, B.H. Kear: Trans. Metal. AIME., 1967, vol. 239, pp. 984-992.

    Google Scholar 

  32. W.W. Milligan, S.D. Antolovich: Metall. Trans. A, 1987, vol. 18, pp. 85-95.

    Article  Google Scholar 

  33. R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, T.M. Pollock: Metall. Mater. Trans. A, 2009, vol. 40, pp. 1588-1603.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank Jiao Li (Instrumental analysis center of Xi’an Jiaotong University) for her assistance in conducting the SEM and TEM experiments. This work was also financially supported by the Strategic Emerging Industry Project of Sichuan Province (Grant Number SC201351010620), China Huaneng Power International Inc (Grant Number HNKJ17-H10), and China Postdoctoral Science Foundation (Grant Number 2017M623213) as well as Shaanxi Provincial People’s and Social Welfare Department (Grant Number 2017031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Zhang, Y. Yuan, Y. Gu or J. Wang.

Additional information

Manuscript submitted October 17, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Yuan, Y., Yin, H. et al. Tensile Properties and Deformation Mechanisms of Haynes 282 at Various Temperatures. Metall Mater Trans A 49, 1571–1578 (2018). https://doi.org/10.1007/s11661-018-4515-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4515-5

Navigation