Skip to main content
Log in

Microstructural Engineering in Eutectoid Steel: A Technological Possibility?

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Eutectoid wire rods were subjected to controlled thermo-mechanical processing (TMP). Both increased cooling rate and applied stress during the austenite-to-pearlite decomposition produced significant changes in the microstructure: major increases in the pearlite’s axial alignment and minor decreases in the interlamellar spacing. The pearlite alignment was correlated with changes in the ferrite crystallographic texture and the state of residual stress. Microstructural engineering, improved axial alignment of pearlite, through controlled TMP gave a fourfold increase in torsional ductility. TMP of eutectoid steel thus appears to have interesting technological possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Li, D. Raabe, M. Herbig, P. Choi, S. Goto, A. Kostka and H. Yarita: Phys. Rev. Lett., 2014, vol. 113, 106104, pp. 1-5.

    Google Scholar 

  2. G. Langford: Metall. Trans. A., 1977, vol. 8, pp. 861–75.

    Article  Google Scholar 

  3. M. Zelin: Acta Mater., 2002, vol. 50, pp. 4431–4447.

    Article  Google Scholar 

  4. X. Zhang, A. Godfrey, N. Hansen, X. Huang, W. Liu and Q. Liu: Mater. Charact., 2009, vol. 61, pp. 65-72.

    Article  Google Scholar 

  5. X. Zhang, A. Godfrey, X. Huang, N. Hansen and Q. Liu: Acta Mater., 2011, vol. 59, pp. 3422-3430.

    Article  Google Scholar 

  6. Y.J. Li, P. Choi, S. Goto, C. Borchers, D. Raabe and R. Kirchheim: Acta Mater., 2012, vol. 60, pp. 4005-4016.

    Article  Google Scholar 

  7. A. B. Dove, “Steel Wire Handbook – Volume 3”, First ed., The Wire Association, Branford, Connecticut, 1972.

    Google Scholar 

  8. B. Verlinden, J. Driver, I. Samajdar and R.D. Doherty, “Thermo-Mechanical Processing of Metallic Materials”, First ed., Pergamon Materials Series, Elsevier, Oxford, 2007.

    Google Scholar 

  9. Sorby HC (1886) J. Iron Steel Inst. 1: 140–144.

    Google Scholar 

  10. Benedicks C (1905) J. Iron Steel Inst. 2: 352-70.

    Google Scholar 

  11. Howe HM, Levy AG (1916) J. Iron Steel Inst. 2: 210.

    Google Scholar 

  12. F. C. Hull and R. F. Mehl: Trans Am Soc Met., 1942, vol. 30, pp. 381-421.

    Google Scholar 

  13. M. Hillert: The Formation of Pearlite” in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, Interscience, Wiley, New York, 1962.

  14. C. G. Andrés, F. G. Caballero, C. Capdevila and H. K. D. H. Bhadeshia: Scr. Mater., 1998, vol. 39, pp. 791-96.

    Article  Google Scholar 

  15. H. I. Aaronson, M. Enomoto and J. K. Lee, “Mechanisms of diffusional phase transformations in metals and alloys”, First ed., CRC Press, Taylor & Francis Group, Boca Raton, FL, 2010.

    Book  Google Scholar 

  16. V. A. Esin, B. Denand, Q. L. Bihan, M. Dehmas, J. Teixeira, G. Geandier, S. Denis, T. Sourmail and E. A. Gautier: Acta Mater., 2014, vol. 80, pp. 118-31.

    Article  Google Scholar 

  17. K. E. Puttick: J Iron Steel Inst., 1957, vol. 185, pp. 161-167.

    Google Scholar 

  18. X. Zhang, A. Godfrey, N. Hansen and X. Huang: Acta Mater., 2013, vol. 61, pp. 4898-4909.

    Article  Google Scholar 

  19. L. E. Karkina, I. N. Karkin, I. G. Kabanova and A. R. Kuznetsov: Appl. Cryst., 2015, vol. 48, pp. 97-106.

    Article  Google Scholar 

  20. M. Guziewski, S. P. Coleman and C. R. Weinberger: Acta Mater., 2018, vol. 144, pp. 656-665.

    Article  Google Scholar 

  21. M. M. Aranda, B. Kim, R. Rementeria, C. Capdevila and C. G. Andrés: Met. Metall. Trans. A, 2014, vol. 45, pp. 1778-86.

    Article  Google Scholar 

  22. T. Z. Zhao, G. L. Zhang, S. H. Zhang and L. Y. Zhang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 1290-96.

    Article  Google Scholar 

  23. P. K. Agarwal and J. K. Brimacombe: Metall. Trans. A, 1981, vol. 12, pp. 121-33.

    Article  Google Scholar 

  24. E. B. Hawbolt, B. Chau and J. K. Brimacombe: Metall. Trans. A, 1985, vol. 16, pp. 565-78.

    Article  Google Scholar 

  25. T. T. Pham, E. B. Hawbolt and J. K. Brimacombe: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1987-92.

    Article  Google Scholar 

  26. T. T. Pham, E. B. Hawbolt and J. K. Brimacombe: Metall. Mater. Trans. A, 1995, vol. 26, pp. 1993-2000.

    Article  Google Scholar 

  27. E. B. Hawbolt, B. Chau and J. K. Brimacombe: Metall. Trans. A, 1983, vol. 14, pp. 1803-1815.

    Article  Google Scholar 

  28. M. Enomoto, W. Huang and H. Ma: ISIJ Int., 2012, vol. 52, pp. 626-631.

    Article  Google Scholar 

  29. M. Enomoto, W. Huang and H. Ma: ISIJ Int., 2012, vol. 52, pp. 632-37.

    Article  Google Scholar 

  30. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar: Acta Mater., 2017, vol. 129, pp. 278-289.

    Article  Google Scholar 

  31. C Zener: Trans Am Inst Min Metall Eng., 1946, vol. 167, pp. 550-95.

    Google Scholar 

  32. R. F. Mehl and H. C. Hagel: Prog. Met. Phys., 1956, vol. 6, pp. 74–134.

    Article  Google Scholar 

  33. G. F. Bolling and R. H. Richman: Metall. Trans., 1970, vol. 1, pp. 2095-2104.

    Article  Google Scholar 

  34. B. L. Bramfitt and A. R. Marder: Metall. Trans., 1973, vol. 4, pp. 2291-2301.

    Article  Google Scholar 

  35. P. C. Campbell, E. B. Hawbolt and J. K. Brimacombe: Metall. Trans A., 1991, vol. 22, pp. 2769-78.

    Article  Google Scholar 

  36. P. C. Campbell, E. B. Hawbolt and J. K. Brimacombe: Metall. Trans A., 1991, vol. 22, pp. 2779-90.

    Article  Google Scholar 

  37. S. Goto, R. Kirchheim, T. Al-Kassab and C. Borchers: Trans. Non ferrous Met. Soc. China, 2007, vol. 17, pp.1129-1138.

    Article  Google Scholar 

  38. A. Durgaprasad, S. Giri, S. Lenka, S. Kundu, S. Mishra, S. Chandra, R. D. Doherty and I. Samajdar, Metall. Trans A., 2017, vol. 48, pp. 4583-4597.

    Article  Google Scholar 

  39. K. W. Andrews: Acta Metall., 1963, vol. 11, pp. 939-946.

    Article  Google Scholar 

  40. S. Denis, E. Gautier, S. Sjostrom and A. Simon: Acta Metall., 1987, vol. 35, pp. 1621-1632.

    Article  Google Scholar 

  41. S. Denis, S. Sjostrom and A. Simon: Metall. Trans A., 1987, vol. 18, pp. 1203-1213.

    Article  Google Scholar 

  42. P. Van Houtte, The “MTM-FHM” and “MTM-TAY” Software System - Version 2, Manual, Department of MME, KLU Leuven, Belgium, 1995.

    Google Scholar 

  43. Bunge HJ (2013) Texture Analysis in Materials Science: Mathematical Methods”, Elsevier, London 2013.

    Google Scholar 

  44. P. Van Houtte and L. De Buyser: Acta Metall. Mater., 1993, vol. 41, pp. 323-336.

    Article  Google Scholar 

  45. Dong-Woo Suh, Chang-Seok Oh, Heung Nam Han and Sung-Joon Kim: Acta Mater., 2007, vol. 55, pp. 2659–2669.

    Article  Google Scholar 

  46. Stuart H, Ridley N (1966) J. Iron Steel Inst. 204: 711-717.

    Google Scholar 

  47. Reed Hill RE (1973) Physical Metallurgy Principles, 2nd ed., pp. 702, Elsevier: Amsterdam

    Google Scholar 

  48. Askeland DR (1989) The Science and Engineering of Materials, 2nd Edition, p. 372, Brooks, Cole: Boston

    Google Scholar 

  49. Vander Voort GF (1991) The Atlas of Time- Temperature Diagrams for Irons and Steels, ASM International: Reading PA, pp. 11.

    Google Scholar 

  50. N. Ridley: Metall. Trans. A., 1984, vol. 15, pp. 1019-36.

    Article  Google Scholar 

  51. A. R. Marder and B. L. Bramfitt: Metallurgical Transactions A, 1975, vol. 6, pp. 2009-2014.

    Article  Google Scholar 

  52. F. Fang, L. Zhou, X. Hu, X. Zhou, Y. Tu, Z. Xie and J. Jiang: Mater. Des., 2015, vol. 79, pp. 60-67.

    Article  Google Scholar 

  53. F. Fang, Y. Zhao, L. Zhou, X. Hu, Z. Xie and J. Jiang: Mater. Sci. Eng. A., 2014, vol. 17, pp. 505-10.

    Article  Google Scholar 

  54. X. Hu, L. Wang, F. Fang, Z. Ma, Z. H. Xie and J. Jiang: J Mater. Sci., 2013, vol. 48, pp. 5528-5535.

    Article  Google Scholar 

  55. T. Z. Zhao, G. L. Zhang, H. W. Song, M. Cheng and S. H. Zhang: J Mater Eng. Per. 2014 Vol. 23, pp. 3279-84.

    Article  Google Scholar 

  56. Y. He, S. Xiang, W. Shi, J. Liu, X. Ji and W. Yu: Mater. Sci. Eng. A., 2017, vol. 23, pp. 153-63.

    Article  Google Scholar 

  57. P. Van Houtte: Textures and Microstruct., 1987, vol. 7, pp. 187-205.

    Article  Google Scholar 

  58. S. Raveendra, A. K. Kanjarla, H. Paranjape, S.K. Mishra, S. Mishra and L. Delannay: Metall. Mater. Trans A., 2011, vol. 42, pp. 2113–2124.

    Article  Google Scholar 

  59. Z. Li, Z. Wen, F. Su, R. Zhang and Z Zhou: J Mater Sci., 2018, vol. 53, pp. 1424–1436.

    Article  Google Scholar 

  60. S.W. Thompson, P.R. Howell, Scr. Metall., 1988, vol. 22, pp. 1775-1778.

    Article  Google Scholar 

  61. S. Zhang: Adv. Mater. Res., 2011, vol. 284-286, pp. 2358-65.

    Article  Google Scholar 

  62. L. Zhou, F. Fang, L. Wang, H. Chen, Z. Xie and J. Jiang: Mater. Sci. Eng. A, 2018, vol. 713, pp. 52–60.

    Article  Google Scholar 

  63. Y. J. Li, P. Choi, S. Goto S, C. Borchers, D. Raabe and R. Kirchheim: Acta Mater., 2011, vol. 59, pp. 3965-77.

    Article  Google Scholar 

  64. T. Z. Zhao, G. L. Zhang, S. H. Zhang and L. Y. Zhang: J. Iron Steel Res. Int., 2016, vol. 23, pp. 1206-1212.

    Article  Google Scholar 

  65. T. Z. Zhao, S. H. Zhang, G. L. Zhang and L. Y. Zhang: Mater. Des., 2014, vol. 59, pp. 397-405.

    Article  Google Scholar 

  66. G. Langford: Metall. Trans. A., 1970, Vol. 8, pp. 121 – 132.

    Google Scholar 

  67. S.K. Lee, D.C. Ko and B. M. Kim: Mater. Des., 2009, vol. 30, pp. 2919–2927.

    Article  Google Scholar 

  68. A. Durgaprasad: Ph.D. Thesis, Department of MEMS, Indian Institute of Technology Bombay, Mumbai, 2017.

  69. K. Shimizu and N. Kawabe: ISIJ Int, 2001, vol. 41, pp. 183–191.

    Article  Google Scholar 

  70. C. Borchers and R. Kirchheim: Prog. Mater. Sci., 2016, vol. 82, pp. 405-444.

    Article  Google Scholar 

Download references

Acknowledgment

Support from Tata Steel and DST (Department of Science and Technology, India) are acknowledged. The authors would also like to express their appreciation for the usage of the National Facility of Texture and OIM and support from CoEST (center of excellent in steel technology) at IIT Bombay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Samajdar.

Additional information

Manuscript submitted July 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durgaprasad, A., Giri, S., Lenka, S. et al. Microstructural Engineering in Eutectoid Steel: A Technological Possibility?. Metall Mater Trans A 49, 1520–1535 (2018). https://doi.org/10.1007/s11661-018-4501-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4501-y

Navigation