Skip to main content
Log in

Interfacial Effect on the Deformation Mechanism of Bulk Nanolaminated Graphene-Al Composites

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uniaxial tensile tests were carried on graphene (reduced graphene oxide, RGO)–Al laminated composites with Al lamella thicknesses varying from 1 μm down to 200 nm. It was found that there was a transition in plastic deformation mechanism, from a Hall–Petch-typed mechanism at 500 nm and 1 μm Al lamella thicknesses, to confined layer slip (CLS) of dislocations at the 200 nm Al lamella thickness. Moreover, the strengthening effect of RGO was only demonstrated in composite having 200-nm-thick Al lamellas, which can be rationalized by the enhanced barrier for dislocation de-pinning processes in the CLS mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. N. Chawla and Y.L. Shen: Adv. Eng. Mater., 2001, vol. 3, pp. 357–70.

    Article  Google Scholar 

  2. L.J. Huang, L. Geng and H.X. Peng: Prog. Mater. Sci., 2015, vol. 71, pp. 93–68.

    Article  Google Scholar 

  3. R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.

    Article  Google Scholar 

  4. J.W.C. Dunlop and P. Fratzl: Annu. Rev. Mater. Res., 2010, vol. 40, pp. 1–24.

    Article  Google Scholar 

  5. H. Gao, B. Ji, I.L. Jager, E. Arzt and P. Fratzl: Proc. Natl. Acad. Sci., 2003, vol. 100, pp. 5597–600.

    Article  Google Scholar 

  6. M.E. Launey and R.O. Ritchie: Adv. Mater., 2009, vol. 21, pp. 2103–10.

    Article  Google Scholar 

  7. T.J. Kang, J.W. Yoon, D.I. Kim, S.S. Kum, Y.H. Huh, J.H. Hahn, S.H. Moon, H.Y. Lee and Y.H. Kim: Adv. Mater., 2007, vol. 19, pp. 427–32.

    Article  Google Scholar 

  8. L. Jiang, Z. Li, G. Fan, L. Cao and D. Zhang: Scripta Mater., 2012, vol. 66, pp. 331–34.

    Article  Google Scholar 

  9. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon and S.M. Han: Nat. Commun., 2013, vol. 4, 2114.

    Article  Google Scholar 

  10. Z Li, GL Fan, Q Guo, ZQ Li, YS Su, D Zhang (2015) Carbon 95:419–27.

    Article  Google Scholar 

  11. Z. Li, Q. Guo, Z. Li, G. Fan, D.B. Xiong, Y. Su, J. Zhang and D. Zhang: Nano Lett., 2015, vol. 15, pp. 8077–83.

    Article  Google Scholar 

  12. S.W. Feng, Q. Guo, Z. Li, G.L. Fan, Z.Q. Li, D.B. Xiong, Y.S. Su, Z.Q. Tan, J. Zhang and D. Zhang: Acta Mater., 2017, vol. 125, pp. 98–08.

    Article  Google Scholar 

  13. M.A. Meyers, A. Mishra and D.J. Benson: Prog. Mater. Sci., 2006, vol. 51, pp. 427–56.

    Article  Google Scholar 

  14. J.Y. Zhang, X. Zhang, R.H. Wang, S.Y. Lei, P. Zhang, J.J. Niu, G. Liu, G.J. Zhang and J. Sun: Acta Mater., 2011, vol. 59, pp. 7368–79.

    Article  Google Scholar 

  15. L. Zhao, Q. Guo, Z. Li, Z.Q. Li, G.L. Fan, D.-B. Xiong, Y.S. Su, J. Zhang, Z.Q. Tan and D. Zhang: Int. J. Plast., 2018, vol. 105, pp. 128–40.

    Article  Google Scholar 

  16. Z. Li, L. Zhao, Q. Guo, Z.Q. Li, G.L. Fan, C.P. Guo and D. Zhang: Scripta Mater., 2017, vol. 131, pp. 67–71.

    Article  Google Scholar 

  17. Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li and D. Zhang: Nanotechnology, 2014, vol. 25, pp. 325601.

    Article  Google Scholar 

  18. L.J. Bonderer, A.R. Studart and L.J. Gauckler: Science, 2008, vol. 319, pp. 1069–73.

    Article  Google Scholar 

  19. R.E. Stoller and S.J. Zinkle: J. Nucl. Mater., 2000, vol. 283–287, pp. 349–52.

    Article  Google Scholar 

  20. A. Misra, J.P. Hirth and R.G. Hoagland: Acta Mater., 2005, vol. 53, pp. 4817–24.

    Article  Google Scholar 

  21. P.M. Anderson and C. Li: Nanostruct. Mater., 1995, vol. 5, pp. 349–62.

    Article  Google Scholar 

  22. A. Misra, J.P. Hirth and H. Kung: Philos. Mag., 2002, vol. 82, pp. 2935–51.

    Article  Google Scholar 

  23. N. Li, J. Wang, A. Misra and J.Y. Huang: Microsc. Microanal., 2012, vol. 18, pp. 1155–62.

    Article  Google Scholar 

  24. A.H.W. Ngan, X.X. Chen, P.S.S. Leung, R. Gu and K.F. Gan: MRS Commun., 2017, vol. 7, pp. 131–40.

    Article  Google Scholar 

  25. B. Devincre, T. Hoc and L. Kubin: Science, 2008, vol. 320, pp. 1745–48.

    Article  Google Scholar 

  26. A. Donohue, F. Spaepen, R. G. Hoagland and A. Misra: Appl. Phys. Lett., 2007, vol. 91, pp. 241905.

    Article  Google Scholar 

  27. J.Y. Zhang, G. Liu, S.Y. Lei, J.J. Niu and J. Sun: Acta Mater., 2012, vol. 60, pp. 7183–96.

    Article  Google Scholar 

Download references

This work was supported by the financial support from the Ministry of Science and Technology of China (No. 2016YFE0130200, 2017YFB0703100), the Natural Science Foundation of China (Nos. 51771111, 51771110, 51671130, 51501111), the Science & Technology Committee of Shanghai Municipality (No. 17520712400), and China Scholarship Council (CSC) (No. 201706230104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Guo or Di Zhang.

Additional information

Manuscript submitted July 21, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Guo, Q., Shi, Y. et al. Interfacial Effect on the Deformation Mechanism of Bulk Nanolaminated Graphene-Al Composites. Metall Mater Trans A 50, 1113–1118 (2019). https://doi.org/10.1007/s11661-018-05108-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-05108-6

Navigation