Skip to main content
Log in

Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics

  • Topical Collection: Next Generation Superalloys and Beyond
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the Nb-rich ternary eutectic in the Nb-Si-Cr system has been experimentally determined to be Nb-10.9Si-28.4Cr (in at. pct). The eutectic is composed of three main phases: Nb solid solution (Nbss), β-Cr2Nb, and Nb9(Si,Cr)5. The ternary eutectic microstructure remains stable for several hundred hours at a temperature up to 1473 K (1200 °C). At 1573 K (1300 °C) and above, the silicide phase Nb9(Si,Cr)5 decomposes into α-Nb5Si3, Nbss, and β-Cr2Nb. Under creep conditions at 1473 K (1200 °C), the alloy deforms by dislocation creep while the major creep resistance is provided by the silicide matrix. If the silicide phase is fragmented and, thus, its matrix character is destroyed by prior heat treatment [e.g., at 1773 K (1500 °C) for 100 hours], creep is mainly controlled by the Laves phase β-Cr2Nb, resulting in increased minimum strain rates. Compared to state of the art Ni-based superalloys, the creep resistance of this three-phase eutectic alloy is significantly higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.-C. Zhao, J. H. Westbrook, MRS Bull. 2003 (11), 622–630

    Article  Google Scholar 

  2. B. P. Bewlay, M. Jackson, J.-C. Zhao, P. R. Subramanian, Metall. Mater. Trans. A 2003, 34A , 2043 – 2052.

    Article  Google Scholar 

  3. F. Gang, M. Heilmaier, JOM 2014, 66 (9), 1908 – 1913. DOI: 10.1007/s11837-014-1109-6.

    Article  Google Scholar 

  4. N. Sekido, Y. Kimura, Y. Mishima, Mat. Res. Soc. Symp. Proc 2003, 753, BB5.25.1-BB5.25.6.

    Google Scholar 

  5. K. Zelenitsas, P. Tsakiropoulos, Intermetallics 2005, 13 (10), 1079 – 1095. DOI: 10.1016/j.intermet.2005.02.002.

    Article  Google Scholar 

  6. J. Geng, P. Tsakiropoulos, G. Shao, Materials Science and Engineering: A 2006, 441 (1-2), 26 – 38. DOI: 10.1016/j.msea.2006.08.093.

    Article  Google Scholar 

  7. J. Geng, P. Tsakiropoulos, Intermetallics 2007, 15 (3), 382 – 395. DOI: 10.1016/j.intermet.2006.08.016.

    Article  Google Scholar 

  8. J. Geng, P. Tsakiropoulos, G. Shao, Intermetallics 2007, 15 (3), 270 – 281. DOI: 10.1016/j.intermet.2006.06.003.

    Article  Google Scholar 

  9. B. Khazai, R. Kershaw, K. Dwight, A. Wold, J. Solid State Chem. 1981, 39, 395 – 400.

    Article  Google Scholar 

  10. G. Shao, Intermetallics 2005, 13 (1), 69 – 78. DOI: 10.1016/j.intermet.2004.06.003.

    Article  Google Scholar 

  11. B. P. Bewlay, Y. Yang, R. L. Casey, M. R. Jackson, Y. A. Chang, Intermetallics 2009, 17 (3), 120 – 127. DOI: 10.1016/j.intermet.2008.10.005.

    Article  Google Scholar 

  12. L. Cornish, D. M. Cupid, J. Gröbner, and A. Malfliet: Cr-Nb-Si Ternary Phase Diagram Evaluation. http://materials.springer.com/msi/docs/sm_msi_r_10_010543_01, 2010.

  13. J.-C. Zhao, M. Jackson, L. Peluso, Acta Materialia 2003, 51 (20), 6395 – 6405. DOI: 10.1016/j.actamat.2003.08.007.

    Article  Google Scholar 

  14. P. Villars, L. D. Calvert, Pearson´s Handbook of Crystallographic Data for Intermetallic Phases: Cr 2 Nb - In 2 P 3 Se 9 , ASM International, Materials Park, Ohio, 1991.

    Google Scholar 

  15. J. Geng, Development of niobium silicide based in situ composites: Next generation materials for high temperature applications, LAP Lambert Academic Publishing, Saarbrücken 2009.

    Google Scholar 

  16. B. Predel: Nb-Si (Niobium-Silicon): Landolt-Börnstein—Group IV Physical Chemistry 5H Li-Mg - Nd-Zr, Springer, Berlin, 1997, pp. 1–3

    Google Scholar 

  17. M. E. Schlesinger, H. Okamoto, A. B. Gokhale, R. Abbaschian, JPE 1993, 14 (4), 502 – 509. DOI: 10.1007/BF02671971.

    Article  Google Scholar 

  18. M. G. Mendiratta, D. M. Dimiduk, Scr Metall. Mater. 1991, 25, 237 – 242.

    Article  Google Scholar 

  19. B. P. Bewlay, C. L. Briant, A. W. Davis, M. R. Jackson, Mater. Res. Soc. Symp. Proc. 2001, vol. 646, pp N.2.7.1–N.2.7.6

    Google Scholar 

  20. C. Seemüller, M. Heilmaier, T. Hartwig, M. Mulser, N. Adkins, M. Wickins, Mat. Res. Soc. Symp. Proc 2013, 1516, 317 – 322.

    Article  Google Scholar 

  21. P. R. Subramanian, T. A. Parthasarathy, M. G. Mendiratta, D. M. Dimiduk, Scr Metall. Mater. 1995, 32 (8), 1227 – 1232.

    Article  Google Scholar 

  22. G. Brinson and B.B. Argent: J. Inst. Met., 1962/63, vol. 91, pp. 293–298.

  23. K. S. Chan, Materials Science and Engineering: A 2002, 337 (1-2), 59 – 66. DOI: 10.1016/S0921-5093(02)00011-4.

    Article  Google Scholar 

  24. G. A. Henshall, P. R. Subramanian, M. J. Strum, M. G. Mendiratta, Acta Materialia 1997, 45 (8), 3135 – 3142.

    Article  Google Scholar 

  25. M. Yoshida, T. Takasugi, Intermetallics 2002, 10 (1), 85 – 93. DOI: 10.1016/S0966-9795(01)00107-8.

    Article  Google Scholar 

  26. B. P. Bewlay, C. L. Briant, E. T. Sylven, M. R. Jackson, Mat. Res. Soc. Symp. Proc 2003 (753), 24

    Google Scholar 

  27. P. Jain, K. S. Kumar, Acta Materialia 2010, 58 (6), 2124 – 2142. DOI: 10.1016/j.actamat.2009.11.054.

    Article  Google Scholar 

  28. D. Schliephake, M. Azim, K. von Klinski-Wetzel, B. Gorr, H.-J. Christ, H. Bei, E. P. George, M. Heilmaier, Metall and Mat Trans A 2014, 45 (3), 1102 – 1111. DOI: 10.1007/s11661-013-1944-z.

    Article  Google Scholar 

  29. M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H.-J. Christ, B. Gorr, S. Burk, JOM 2009, 61 (7), 61 – 67. DOI: 10.1007/s11837-009-0106-7.

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the German Science Foundation (DFG) under grant no.’s HE1872/19-1 and -2 is gratefully acknowledged. Moreover, the authors would like to thank Frank Stein and Martin Palm from Max-Planck-Institut für Eisenforschung, Duesseldorf, Germany, as well as Georg Hasemann from Forschungszentrum Juelich for fruitful discussions on ternary eutectics. Moreover, support by the colleagues from Duesseldorf in terms of WDS measurements is gratefully acknowledged. The authors would also like to thank Fabia Suess for experimental support. This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF, www.knmf.kit.edu), a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology (KIT, www.kit.edu). AK thanks the Carl Zeiss Foundation for financial support through a postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Gang.

Additional information

Manuscript submitted on June 29, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gang, F., Kauffmann, A. & Heilmaier, M. Phase Evolution in and Creep Properties of Nb-Rich Nb-Si-Cr Eutectics. Metall Mater Trans A 49, 763–771 (2018). https://doi.org/10.1007/s11661-017-4367-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4367-4

Navigation